special

您的位置: 首页 > 院士专题 > 专题列表

共检索到214条,权限内显示50条;

[学术文献 ] Spatiotemporal regulation of anther's tapetum degeneration paved the way for a reversible male sterility system in cotton 进入全文

PLANT BIOTECHNOLOGY JOURNAL

Male sterility is an important agronomical trait in self-pollinating plants for producing cost-effective F1 hybrids to harness the heterosis. Still, large-scale development and maintenance of male sterile lines and restoring fertility in F1 hybrids pose significant challenges in plant hybrid breeding. Cotton is a self-pollinating crop and exhibits strong hybrid vigor. However, there are currently few breeding methods to achieve cost-effective production of F1 hybrid cotton. Here, we utilized novel functions of the Arabidopsis autophagy-related BECLIN1/ATG6 and a mutant of E3 ubiquitin ligase COP1 (COP1L105A) genes in developing rescuable male sterility in cotton. We have generated multiple male-sterile (MS) and restorer (RS) cotton lines expressing BECLIN1 and COP1L105A, respectively. Cytological observation showed that post-meiotic tapetal expression of BECLIN1 delays tapetum developmental programmed cell death (dPCD) by affecting reactive oxygen species (ROS) balance-this delay in dPCD results in early microspore defects and later small-sized flowers with indehiscent anthers. Furthermore, the evaluation of F1 hybrids developed by crossing MS and RS lines showed that early tapetal COP1L105A expression abolishes expression of BECLIN1 resulting in normal tapetum degeneration, pollen development, and fertility. In addition, the F1 hybrid developed with MS and RS cotton lines in transgenic glass-house and net-house conditions showed the rescued fertility comparable with control plants (WT). In terms of cotton fiber productivity, the COP1L105A-expressing transgenic cotton lines outperformed the WT. The current work effectively demonstrates the wider applicability of the new F1 cotton production system.

[学术文献 ] A Golgi vesicle-membrane-localized cytochrome B561 regulates ascorbic acid regeneration and confers Verticillium wilt resistance in cotton 进入全文

PLANT JOURNAL

Ascorbic acid (AsA) serves as a key antioxidant involved in the various physiological processes and against diverse stresses in plants. Due to the insufficiency of AsA de novo biosynthesis, the AsA regeneration is essential to supplement low AsA synthesis rates. Redox reactions play a crucial role in response to biotic stress in plants; however, how AsA regeneration participates in hydrogen peroxide (H2O2) homeostasis and plant defense remains largely unknown. Here, we identified a Golgi vesicle-membrane-localized cytochrome B561 (CytB561) encoding gene, GhB561-11, involved in AsA regeneration and plant resistance to Verticillium dahliae in cotton. GhB561-11 was significantly downregulated upon V. dahliae attack. Knocking down GhB561-11 greatly enhanced cotton resistance to V. dahliae. We found that suppressing GhB561-11 inhibited the AsA regeneration, elevated the basal level of H2O2, and enhanced the plant defense against V. dahliae. Further investigation revealed that GhB561-11 interacted with the lipid droplet-associated protein GhLDAP3 to collectively regulate the AsA regeneration. Simultaneously silencing GhB561-11 and GhLDAP3 significantly elevated the H2O2 contents and dramatically improved the Verticillium wilt resistance in cotton. The study broadens our insights into the functional roles of CytB561 in regulating AsA regeneration and H2O2 homeostasis. It also provides a strategy by downregulating GhB561-11 to enhance Verticillium wilt resistance in cotton breeding programs.

[学术文献 ] Harnessing genetic diversity in cotton for enhanced resilience against salt stress by using agro-physiological characters 进入全文

PLANT PRODUCTION SCIENCE

Creating salt-tolerant genotypes is crucial for maximizing the productivity under salinized land. To evaluate genetic diversity for salt tolerance, 35 diverse cotton accessions were screened under 17 dS m-1 salt stress conditions using 20 agronomic and physiological traits relevant to salt tolerance. The general linear model analysis indicated significant salinity impacts across the studied accessions, and genotype x treatment effects were also significant for all parameters examined. Among all 35 studied accessions; the genotypes CCB-1, CCB-2, CCB-28, CCB-3, CCB-4, Ghauri-1, JSQ-70, and JSQ-71 showed considerably higher performance for plant height, boll per plant, boll weight, lint percentage, seed cotton yield and fiber quality traits under salt stress. Physiological traits, chlorophyll and carotenoid contents, total soluble proteins, K+, and K+/Na+ were reduced under saline conditions, while biochemical traits such as catalase, superoxide dismutase, peroxidase, H2O2 and MDA level increased. The genotypes CCB-17, CCB-18, CCB-19, CCB-20, CCB-21, CCB-22, Hatf-3, Badar-1, Eagle-2, Eagle-4, CCB-23, CCB-24, CCB-25, CCB-26 and CCB-28 exhibited lower values for agro-physiological and fiber quality character respectively, signifying their sensitivity to salt stress. Under salinity, these genotypes showed reduced antioxidant levels and increased values for K+/Na+, Na+, H2O2, and MDA contents. Whereas the genotypes CCB-5, CCB-6, CCB-7, CCB-8, CCB-9, CCB-10, CCB-11, CCB-12, CCB-13, CCB-14, CCB-15, and CCB-16 demonstrated moderate performance for these traits under salt stress conditions respectively. Utilizing multivariate analysis techniques (cluster and PCA), 35 genotypes have been categorized into three groups based on studied traits: tolerant (cluster-1), moderately tolerant (cluster-2), and susceptible (cluster-3) under saline conditions.

[学术文献 ] Calculation and evaluation of cotton lint carbon footprint based on different cotton straw treatment methods: A case study of Northwest China 进入全文

JOURNAL OF CLEANER PRODUCTION

At present, although there have been many studies on the carbon footprint (CF) of cotton, only a few studies have comprehensively considered the carbon sequestration effect of cotton. The raw material extraction stage of cotton can be divided into two stages: the cotton cultivation-harvesting stage and the ginning stage. During the cultivation stage, cotton plants exhibit a carbon sequestration effect due to photosynthesis, and the biomass produced is ultimately transferred to seed cotton and cotton straw. In this study, quantitative models for carbon sequestration effect during the raw material extraction stage were established based on the carbon sequestration pathways of cotton plants and three treatment methods of cotton straw. The CF allocation principles between main and by-products have been determined as economic relationships and mass relationships. Based on these four carbon sequestration models and two allocation relationships, six different scenarios were proposed to optimize the CF of producing 1 ton of cotton lint during this stage. Results indicate that the CF of 1 ton of cotton lint harvested during the raw material extraction stage was negative in all six scenarios, suggesting carbon reduction. Converting cotton straw into biomass fuel after harvesting sequesters more carbon compared to crushing and returning it to the field. Economic allocation results in a higher CF value for cotton lint compared to mass allocation. The primary contributors to the CF of cotton lint are fertilizer, electricity, and agricultural films. This study offers valuable methodological and technical insights for assessment on cotton fiber textiles, with potential implications for emissions reduction and fostering sustainable development within this industry.

[学术文献 ] Revolutionizing cotton cultivation: A comprehensive review of genome editing technologies and their impact on breeding and production 进入全文

BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS

Cotton (Gossypium hirsutum L.), a vital global cash crop, significantly impacts both the agricultural and industrial sectors, providing essential fiber for textiles and valuable byproducts such as cottonseed oil and animal feed. The cultivation of cotton supports millions of livelihoods worldwide, particularly in developing regions, making it a cornerstone of rural economies. Despite its importance, cotton production faces numerous challenges, including biotic stresses from pests and diseases, and abiotic stresses like drought, salinity, and extreme temperatures. These challenges necessitate innovative solutions to ensure sustainable production. Genome editing technologies, particularly CRISPR/Cas9, have revolutionized cotton breeding by enabling precise genetic modifications. These advancements hold promise for developing cotton varieties with enhanced resistance to pests, diseases, and environmental stresses. Early genome editing tools like ZFNs and TALENs paved the way for more precise modifications but were limited by complexity and cost. The introduction of CRISPR/Cas-based technology with its simplicity and efficiency, has dramatically transformed the field, making it the preferred tool for genome editing in crops. Improved version of the technology like CRISPR/Cas12a, CRISPR/Cas13, base and prime editing, developed from CRISPR/Cas systems, provide additional tools with distinct mechanisms, further expanding their potential applications in crop improvement. This comprehensive review explores the impact of genome editing on cotton breeding and production. It discusses the technical challenges, including off-target effects and delivery methods for genome editing components, and highlights ongoing research efforts to overcome these hurdles. The review underscores the potential of genome editing technologies to revolutionize cotton cultivation, enhancing yield, quality, and resilience, ultimately contributing to a sustainable future for the cotton industry.

[学术文献 ] Utilizing the mutant library to investigate the functional characterization of GhGLR3.4 regulating jasmonic acid to defense pest infestation 进入全文

PLANT JOURNAL

The glutamate receptor (GLR) serves as a ligand-gated ion channel that plays a vital role in plant growth, development, and stress response. Nevertheless, research on GLRs in cotton is still very limited. The present study conducted a comprehensive analysis of GLRs gene family in cotton. In total, 41 members of the GLR family were identified in cotton unveiling distinct subgroups in comparison to Arabidopsis. Among these members, the third subgroup highlights its pivotal role in cotton's defense against insect infestation. Furthermore, the CRISPR/Cas9 system was utilized to create a mutant library of GLR members, which consisted of a total of 135 independent mutant lines, resulting in the production of novel cotton materials with valuable breeding potential for pest control. Further, this study elucidates the influence of GhGLR3.4 on jasmonic acid (JA) pathway signal transduction and demonstrated its participation in the influx of intracellular Ca2+, which regulates "calcium transients" following stimulation, thereby influencing multiple intracellular reactions. The study also found that GhGLR3.4 influences the synthesis of the JA pathway and actively partakes in long-distance signal transmission among plants, facilitating the transfer of defense signals to neighbor leaves and thereby triggering systemic defense. Consequently, this research advances our knowledge of plants' comprehensive defense mechanism against insect pest infestation.

热门相关

意 见 箱

匿名:登录

个人用户登录

找回密码

第三方账号登录

忘记密码

个人用户注册

必须为有效邮箱
6~16位数字与字母组合
6~16位数字与字母组合
请输入正确的手机号码

信息补充