special

您的位置: 首页 > 院士专题 > 专题列表

共检索到69条,权限内显示50条;

[前沿资讯 ] 科学家发展AI赋能的蛋白质理性设计新方法 进入全文

科学网

华东理工大学生物反应器工程国家重点实验室教授郁惠蕾、许建和团队,利用人工智能(AI)赋能的蛋白质理性设计技术重塑了羧酸还原酶的活性中心,大幅提升羧酸还原酶的活性和底物专一性,并成功应用于尼龙6和尼龙66的单体(1,6-己二胺和6-氨基己酸)的生物合成中。相关研究发表于《科学进展》。 研究团队发展了AI赋能的蛋白质理性设计新方法,构建了基于近攻击构象概率和酶-底物结合能的物理模型,并利用Rosetta Design对活性中心多个位点的庞大组合突变体库进行了高效精准的设计和评价,实现了酶活性中心大范围协同突变的“功能重塑”。实验结果显示,人工设计的突变体酶对底物6-氨基己酸的催化效率提升101倍,对底物1,6-己二酸的催化效率提升14倍且底物专一性提高86倍。最终,由1,6-己二酸出发合成的尼龙前体6-氨基己酸和1,6-己二胺,生产强度分别达到文献报道最高值的13.3倍和12倍。

[前沿资讯 ] 学者构建安全高效微生物控制策略 进入全文

科学网

华南理工大学生物科学与工程学院教授熊伟团队与美国国家可再生能源实验室合作,开发出一种基于集群建模与CRISPR干扰(CRISPRi)的新型微生物控制策略。相关成果近日发表于《细胞系统》(Cell Systems)。 研究提出了一种全新的代谢稳健性调控方法。利用计算建模工具,预测并锁定了微生物核心代谢网络中的关键靶点,这些靶点对代谢网络的稳健性具有显著影响。通过CRISPR干扰技术,研究团队能够在实验中精准调控这些基因的表达,定量控制微生物适应度,抑制微生物的生长。 实验过程中,研究团队首先开发了一个基于“稳健性预测”的计算框架,通过模拟酶活性波动对代谢网络的影响,筛选出对稳健性最敏感的基因靶点,如大肠杆菌核心代谢网络中的磷酸果糖激酶、丙酮酸激酶等。得益于CRISPRi技术对调控效率的提升,实验中使用了精简版的Cas12m蛋白和经过优化的遗传绝缘体RiboJ,这种组合不仅大幅减少了基因回路的泄漏,还显著增强了多重基因调控的效率与稳定性。 为了确保安全性,研究还关注了多靶点调控,设计了单基因、多基因联合调控策略,证明通过同时靶向多个代谢稳健性关键节点,可以显著降低微生物逃逸的概率。例如,四重基因靶点(ppc、metE、ptsH和cysH)的CRISPRi设计在实验中表现出极强的生长抑制效果,其逃逸频率远低于当前公认的设定标准。 在多种实验室和自然环境模拟条件下,该系统均能保持较高的稳定性和安全性,在葡萄糖、甘油、乙酸等多种碳源条件的验证中始终有效。在经过长达数周的遗传稳定性测试后,仅观察到少量引导RNA突变,没有出现目标基因功能丧失的情况。研究团队还通过LuxR-AHL诱导系统开发了一种“关闭式”CRISPRi回路,在无诱导剂条件下,能够有效终止微生物的增殖,进一步提升了逃逸控制能力。

[前沿资讯 ] 天津工业生物技术研究所在通过阻断几丁质合成酶表达提高菌丝蛋白转化率方面取得新进展 进入全文

中科院天津工业生物技术研究所

威尼斯镰刀菌在发酵生产真菌蛋白方面具有诸多显著优势,如营养丰富、安全性良好、能够可持续大规模生产等,因此被广泛应用于真菌肉类替代品及其他相关产品中。然而,利用天然菌株生产菌丝体蛋白时,存在转化率低、蛋白含量低等问题,这也导致了较高的生产成本。经研究团队前期研究发现,威尼斯镰刀菌菌丝中高膳食纤维含量是导致大量碳损失的关键因素之一,基于此,降低真菌细胞壁中膳食纤维的含量成为提高菌株转化效率的关键要点。 中国科学院天津工业生物技术研究所李德茂研究员带领的工业生物系统工程研究团队,以降低威尼斯镰刀菌菌丝体蛋白发酵生产中其细胞壁膳食纤维合成为突破口,通过生信分析与评估,对威尼斯镰刀菌中全部共12个几丁质合成酶基因进行了深入研究,精准地锁定了最有希望降低几丁质含量的基因并将其敲除,成功获得几丁质含量下降26%,菌体和蛋白转化率分别提高16%、36%的转化子。然后通过转录组分析,靶定以阻断副产物乙醇合成为主的丙酮酸代谢途径来进一步减少碳代谢流流失。最终使菌体和蛋白的转化率得到了进一步提升,菌体转化率提高了29%,蛋白转化率提高了40%。

[前沿资讯 ] Argonne team breaks new ground in AI-driven protein design 进入全文

Eurekalert

Harnessing the power of artificial intelligence (AI) and the world’s fastest supercomputers, a research team led by the U.S. Department of Energy’s (DOE) Argonne National Laboratory has developed an innovative computing framework to speed up the design of new proteins. One of the key innovations of the team’s MProt-DPO framework is its ability to integrate different types of data streams, or “multimodal data.” It combines traditional protein sequence data with experimental results, molecular simulations and even text-based narratives that provide detailed insights into each protein’s properties. This approach has the potential to accelerate protein discovery for a wide range of applications.

[前沿资讯 ] 科学家研发新型去饱和化酶,解锁烯还原酶的逆反应性实现不对称去饱和化 进入全文

科学网

西湖大学叶宇轩课题组在Nature Chemistry期刊上发表了一篇题为“Unmasking the Reverse Catalytic Activity of ‘Ene’-Reductases for Asymmetric Carbonyl Desaturation”的研究成果。该论文解锁了烯还原酶的全新非天然去饱和化反应性,把它们从还原酶改造成为了去饱和化酶。合成了一系列含有远端四级手性中心的高价值环己烯酮产物;此酶催化反应体系条件温和、操作简单、易于放大;系统的机理研究加深了人们对于烯还原酶催化去饱和化过程中重要基元反应的理解。

[前沿资讯 ] AI模型设计六种性能更优蛋白质 进入全文

科学网

美国麻省总医院布莱根分院和贝斯以色列女执事医疗中心团队开发了一款名为EVOLVEpro的AI工具,被认为是蛋白质工程领域的一项重大突破。团队在最新一期《科学》杂志上展示了通过该工具设计的6种具有不同用途的蛋白质,证明了EVOLVEpro能够提高蛋白质的稳定性、精确度及效率。 团队使用EVOLVEpro对6种蛋白质进行了设计。结果显示,经过EVOLVEpro优化的两种单克隆抗体对目标的黏附力增强了30倍;微型CRISPR核酸酶执行基因编辑的效率提升了5倍;用于基因编辑的蛋白质在向基因组不同位置插入序列的能力提高了两倍;Bxb1整合酶在将DNA片段植入细胞以实现可编程基因整合的效率增加了4倍;而用于RNA合成的T7 RNA聚合酶,在准确复制RNA方面的能力更是提升了100倍。 团队指出,这款工具的最大优势在于它不受自然进化限制。借助AI,他们可以根据特定需求优化蛋白质,创造出性能更佳、速度更快、强度更高的蛋白质,使其更有效地与目标结合,进而改善治疗方法或增强其功能性。

热门相关

意 见 箱

匿名:登录

个人用户登录

找回密码

第三方账号登录

忘记密码

个人用户注册

必须为有效邮箱
6~16位数字与字母组合
6~16位数字与字母组合
请输入正确的手机号码

信息补充