您的位置:
首页
>
院士专题
>
专题
> 详情页
学者构建安全高效微生物控制策略
- 关键词:
- 来源:
- 科学网
- 全文链接:
- //agri.nais.net.cn/topic/downloadFile/92117fd6-f21f-4ed9-80cf-d98515eca746
- 来源地址:
- https://paper.sciencenet.cn/htmlpaper/2024/12/20241220142471125784.shtm
- 资源所属:
- 饲料用酶工程
- 类型:
- 前沿资讯
- 语种:
- 中文
- 原文发布日期:
- 2024-12-20
- 摘要:
- 华南理工大学生物科学与工程学院教授熊伟团队与美国国家可再生能源实验室合作,开发出一种基于集群建模与CRISPR干扰(CRISPRi)的新型微生物控制策略。相关成果近日发表于《细胞系统》(Cell Systems)。研究提出了一种全新的代谢稳健性调控方法。利用计算建模工具,预测并锁定了微生物核心代谢网络中的关键靶点,这些靶点对代谢网络的稳健性具有显著影响。通过CRISPR干扰技术,研究团队能够在实验中精准调控这些基因的表达,定量控制微生物适应度,抑制微生物的生长。实验过程中,研究团队首先开发了一个基于“稳健性预测”的计算框架,通过模拟酶活性波动对代谢网络的影响,筛选出对稳健性最敏感的基因靶点,如大肠杆菌核心代谢网络中的磷酸果糖激酶、丙酮酸激酶等。得益于CRISPRi技术对调控效率的提升,实验中使用了精简版的Cas12m蛋白和经过优化的遗传绝缘体RiboJ,这种组合不仅大幅减少了基因回路的泄漏,还显著增强了多重基因调控的效率与稳定性。为了确保安全性,研究还关注了多靶点调控,设计了单基因、多基因联合调控策略,证明通过同时靶向多个代谢稳健性关键节点,可以显著降低微生物逃逸的概率。例如,四重基因靶点(ppc、metE、ptsH和cysH)的CRISPRi设计在实验中表现出极强的生长抑制效果,其逃逸频率远低于当前公认的设定标准。在多种实验室和自然环境模拟条件下,该系统均能保持较高的稳定性和安全性,在葡萄糖、甘油、乙酸等多种碳源条件的验证中始终有效。在经过长达数周的遗传稳定性测试后,仅观察到少量引导RNA突变,没有出现目标基因功能丧失的情况。研究团队还通过LuxR-AHL诱导系统开发了一种“关闭式”CRISPRi回路,在无诱导剂条件下,能够有效终止微生物的增殖,进一步提升了逃逸控制能力。
- 所属专题:
- 173