special

您的位置: 首页 > 院士专题 > 专题列表

共检索到282条,权限内显示50条;

[学术文献 ] A large-scale gene co-expression network analysis reveals Glutamate Dehydrogenase 2 (GhGDH2_D03) as a hub regulator of salt and salt-alkali tolerance in cotton 进入全文

PLANT MOLECULAR BIOLOGY

Salt stress and salt-alkali stress significantly inhibit the normal growth and development of plants. Understanding the molecular mechanisms of cotton responses to these stresses is crucial for improve yield and fiber quality. In this study, we conducted a comprehensive analysis of the transcriptome dynamics under salt and salt-alkali stress conditions, utilizing 234 RNA-seq datasets compiled from 11 previous studies. After systematic evaluation and correction for batch effects, we observed that root transcriptomes clustered more consistently than leaf transcriptomes across stress treatment and time points. Weighted gene co-expression network analysis (WGCNA) on 123 root transcriptomes identified three key modules, with their hub genes significantly associated with salt and salt-alkali tolerance. Virus-induced gene silencing assay and RNA-seq analysis indicated that GhGDH2_D03 (Gohir.D03G104800), a module hub gene encoding Glutamate Dehydrogenase 2, positively regulates salt and salt-alkali tolerance in cotton by modulating multiple signaling pathways and metabolic processes, including the ethylene signaling pathway. This study underscores the pivotal role of GhGDH2_D03 in conferring tolerance to salt and salt-alkali stress, in addition to its previous reported involvement in biotic stress defense, providing valuable insights and genetic resources for cotton breeding.

[学术文献 ] Cotton under heat stress: a comprehensive review of molecular breeding, genomics, and multi-omics strategies 进入全文

FRONTIERS IN GENETICS

Cotton is a vital fiber crop for the global textile industry, but rising temperatures due to climate change threaten its growth, fiber quality and yields. Heat stress disrupts key physiological and biochemical processes, affecting carbohydrate metabolism, hormone signaling, calcium and gene regulation and expression. This review article explores cotton's defense mechanism against heat stress, including epigenetic regulations and transgenic approaches, with a focus on genome editing tools. Given the limitations of traditional breeding, advanced omics technologies such as GWAS, transcriptomics, proteomics, ionomics, metabolomics, phenomics and CRISPR-Cas9 offer promising solutions for developing heat-resistant cotton varieties. This review highlights the need for innovative strategies to ensure sustainable cotton production under climate change.

[学术文献 ] Identification of Elite Alleles and Candidate Genes for the Cotton Boll Opening Rate via a Genome-Wide Association Study 进入全文

INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES

The boll opening rate (BOR) is an early maturity trait that plays a crucial role in cotton production in China, as BOR has a significant effect on defoliant spraying and picking time of unginned cotton, ultimately determining yield and fiber quality. Therefore, elucidating the genetic basis of BOR and identifying stably associated loci, elite alleles, and potential candidate genes can effectively accelerate the molecular breeding process. In this study, we utilized the mixed linear model (MLM) algorithm to perform a genome-wide association study (GWAS) based on 4,452,629 single-nucleotide polymorphisms (SNPs) obtained through whole-genome resequencing of a natural population of 418 upland cotton accessions and phenotypic BOR data acquired from five environments. A total of 18 SNP loci were identified on chromosome D11 that are stable and significantly associated with BOR in multiple environments. Moreover, a significant SNP peak (23.703-23.826 Mb) was identified, and a GH-D11G2034 gene and favorable allelic variation (GG) related to BOR were found in this genomic region, significantly increasing cotton BOR. Evolutionary studies have shown that GH-D11G2034 may have been subjected to artificial selection throughout the variety selection process. This study provides valuable insights and suggests that the GH-D11G2034 gene and its favorable allelic variation (GG) could be potential targets for molecular breeding to improve BOR in upland cotton. However, further research is needed to validate the function of this gene and explore its potential applications in cotton breeding programs. Overall, this study contributes to the advancement of genetic improvement in early maturity and has important implications for the sustainable development of the cotton industry.

[学术文献 ] A telomere-to-telomere genome assembly of cotton provides insights into centromere evolution and short-season adaptation 进入全文

NATURE GENETICS

Cotton (Gossypium hirsutum L.) is a key allopolyploid crop with global economic importance. Here we present a telomere-to-telomere assembly of the elite variety Zhongmian 113. Leveraging technologies including PacBio HiFi, Oxford Nanopore Technology (ONT) ultralong-read sequencing and Hi-C, our assembly surpasses previous genomes in contiguity and completeness, resolving 26 centromeric and 52 telomeric regions, 5S rDNA clusters and nucleolar organizer regions. A phylogenetically recent centromere repositioning on chromosome D08 was discovered specific to G. hirsutum, involving deactivation of an ancestral centromere and the formation of a unique, satellite repeat-based centromere. Genomic analyses evaluated favorable allele aggregation for key agronomic traits and uncovered an early-maturing haplotype derived from an 11 Mb pericentric inversion that evolved early during G. hirsutum domestication. Our study sheds light on the genomic origins of short-season adaptation, potentially involving introgression of an inversion from primitively domesticated forms, followed by subsequent haplotype differentiation in modern breeding programs.

[学术文献 ] An infrared-transparent textile with high drawing processed Nylon 6 nanofibers 进入全文

NATURE COMMUNICATIONS

Infrared (IR)-transparent radiative cooling textiles show great promise for achieving personal thermal comfort and reducing energy consumption. However, besides a few synthetic fiber materials proposed as IR-transparent textiles, traditional textile materials used to achieve IR transparency have not been realized, impeding large-scale practical applications. Here, based on a common textile material Nylon 6 (PA6), we design a high drawing process with rapid solvent evaporation to achieve IR-transparent PA6 textiles. By altering the chain conformations and crystal structures, the molecular vibrations in the IR region (IR absorption) of PA6 can be significantly weakened. Meanwhile, this process also tailors the fiber to the nanoscale and minimizes IR reflection. Consequently, a human body covered by our textile can stay 2.1 degrees C cooler than with cotton, corresponding to similar to 20% indoor energy savings in cooling. We expect that our work offers an innovative pathway to regulate IR radiation for personal thermal management.

[前沿资讯 ] 新疆科研团队破解机采长绒棉生产加工技术瓶颈 进入全文

中国新闻网

曾几何时,新疆机采长绒棉杂质多,加工后品质下降的问题一直困扰着产业发展。如今,这一难题已被新疆科技创新领军人才田立文团队一步步成功破解。近日,该团队继获得中国、欧洲和优质棉生产国澳大利亚多件发明专利授权外,又联合阿瓦提新雅棉业有限公司研发的优质机采长绒棉生产方法,在美国获发明专利授权。这是中国首个在优质棉生产技术发明创造方面获国内、国际同时授权认可的棉花栽培研究团队,为新疆长绒棉产业发展注入新的活力。 突破机采长绒棉生产加工技术瓶颈 “过去,新疆机采长绒棉加工含杂率偏高、纤维损失大,以及品质不能满足产业需要的问题一直困扰着我们。”新疆农业科学院棉花研究所副所长孔杰说,新疆长绒棉具有纤维长、细、强等特点,在国际市场具有很高知名度,但近年来面临机采后籽棉含杂量高,以及受到地膜、滴灌带等异物污染,不易清理等难题。为了提高机采棉加工质量,满足市场对高性价比原棉的需求,通常采用提高籽棉清杂强度的做法,但对纤维造成了严重机械损伤,导致机采长绒棉推进始终未达预期。 面对这一问题,田立文团队没有退缩。“我们对长绒棉种植与加工全流程进行了梳理,系统优化品种选择、株行距配置、机采前准备、脱叶催熟、加工等相关技术与工艺。”新疆农业科学院棉花研究所研究员田立文说:“我们首次通过发明创新提出了适宜机采长绒棉加工的完整工艺,还对主要清杂设备关键部件及其作业参数重新设计。” 这套创新方案的核心在于,除在种植环节确保机采籽棉优质,并尽可能降低籽棉杂质,还提出整套工艺应包括在籽棉清理环节,选用双通道大直径缠绕辊结构的复合异纤清理机、倾斜式籽棉清理机和提净式籽棉清理机;在皮棉清理环节,选用气流清理机和皮棉梳理机,严控杂质清理道次。 同时,团队发现常规的锯齿式轧花机和皮清机不适合长绒棉皮棉加工与清理,而应选用皮辊轧花机、气流清理机和皮棉梳理机,防止对原棉的循环无序清理造成纤维机械损伤。经过不懈努力,团队成功突破技术瓶颈,为新疆机采长绒棉的发展带来转机。 国际专利授权带来深远影响 “新疆机采长绒棉生产方法获得美国专利授权,意义重大。”田立文说:“此前我们已经先后获得了中国、欧洲、澳大利亚多个发明专利授权,以这些发明创新为支撑,还获得德国纽伦堡和瑞士日内瓦等国际有影响的发明展金、银奖多枚。以上荣誉凸显出中国在优质棉生产,包括优质机采长绒棉生产加工领域的自主创新能力已达世界一流水平。它展示出新疆棉花产业的现代化、机械化程度高,在生产方式上与国际先进水平接轨。我们是依靠技术和装备提升产能。” 在产业竞争力提升方面,田立文表示,通过新技术的应用,包括适宜机采品种选育、棉田机采群体构建、机采棉田机艺融合与水肥药管理,以及机采棉纤维减损加工等技术,“我们通过一系列的新技术创新与应用确保生产的棉花产量高、品质优,同时用工少、生产成本低。实践表明这是提升中国全球优质棉市场竞争力的最有效措施。” 未来研发规划与产业推动 谈及未来团队在长绒棉技术研发中的规划,田立文说:“优质长绒棉生产涉及多个环节,既需要做好单个环节的技术攻关突破,如机采品种培育,关键加工技术参数敲定,又需要系统整体推进。我们将充分发挥已掌握的技术优势,把制定更加完善的优质机采长绒棉生产技术标准作为未来3至5年的工作重点。” 在进一步推动新疆高端棉纺织产业链发展上,田立文说:“从品种筛选及其配套种植技术方面系统研发,积极回应纺织企业对高品质长绒棉技术标准的诉求,更好地为提高新疆优质长绒棉市场竞争力提供技术支撑。我们希望通过不断努力,让新疆优质棉,包括长绒棉在高端棉纺织原料供给中占据更重要的地位,推动整个产业链的升级发展。”

热门相关

意 见 箱

匿名:登录

个人用户登录

找回密码

第三方账号登录

忘记密码

个人用户注册

必须为有效邮箱
6~16位数字与字母组合
6~16位数字与字母组合
请输入正确的手机号码

信息补充