共检索到2066条,权限内显示50条;
[学术文献 ] Particularities of Fungicides and Factors Affecting Their Fate and Removal Efficacy: A Review 进入全文
Sustainability 期刊
Systemic fungicide use has increased over the last decades, despite the susceptibility of resistance development and the side effects to human health and the environment. Although herbicides and insecticides are detected more frequently in environmental samples, there are many fungicides that have the ability to enter water bodies due to their physicochemical properties and their increasing use. Key factors affecting fungicide fate in the environment have been discussed, including the non-target effects of fungicides. For instance, fungicides are associated with the steep decline in bumblebee populations. Secondary actions of certain fungicides on plants have also been reported recently. In addition, the use of alternative eco-friendly disease management approaches has been described. Constructed Wetlands (CWs) comprise an environmentally friendly, low cost, and efficient fungicide remediation technique. Fungicide removal within CWs is dependent on plant uptake and metabolism, absorption in porous media and soil, hydrolysis, photodegradation, and biodegradation. Factors related to the efficacy of CWs on the removal of fungicides, such as the type of CW, plant species, and the physicochemical parameters of fungicides, are also discussed in this paper. There are low-environmental-risk fungicides, phytohormones and other compounds, which could improve the removal performance of CW vegetation. In addition, specific parameters such as the multiple modes of action of fungicides, side effects on substrate microbial communities and endophytes, and plant physiological response were also studied. Prospects and challenges for future research are suggested under the prism of reducing the risk related to fungicides and enhancing CW performance.
[学术文献 ] Plant behavior: Theoretical and technological advances 进入全文
Current Opinion in Psychology 期刊
In this paper we review scientific evidence on recent contributions to the study of plants, such as movement and communication as well as potential forms of attention. Some of the most recent contributions to the study of plant abilities come from comparative studies on biocommunication and research on the accuracy of plants in responding to different environmental stimuli through electrophysiological and kinematical analyses in different context (e.g., individual and social). Furthermore, an underexplored area that warrants further investigation is plants’ multisensory perception and its potential link to multimodal communication capabilities. Research into this set of abilities could help to clarify the degree of behavioral flexibility in sessile organisms without a nervous system and enhance discussions on interactive behavior as expressed in nature. This, in turn, will help to bridge the gap between studies on animal organisms and the rest of the living world.
[学术文献 ] Redefining the Tea Green Leafhopper: Empoasca onukii Matsuda (Hemiptera: Cicadellidae) as a Vital Asset in Premium Tea Production 进入全文
Life-basel 期刊
This review explores the evolving role of the tea green leafhopper, Empoasca onukii, in the tea industry, transitioning from a recognized pest to a significant enhancer of tea quality. Recent research highlights how its feeding behavior stimulates the production of desirable secondary metabolites, thereby improving the flavor profiles and market value of premium teas, particularly varieties like Taiwan’s “Oriental Beauty”. As consumer demand for unique and artisanal teas rises, the economic benefits associated with E. onukii are becoming increasingly evident, prompting farmers to adopt sustainable agricultural practices that often involve reduced pesticide use. Furthermore, the dynamic interplay between climatic factors, E. onukii population dynamics, and tea cultivation practices necessitates integrated pest management strategies that balance the beneficial and detrimental impacts of this leafhopper. Understanding these complexities not only fosters sustainable production methods but also opens niche markets, benefiting local economies and promoting both economic viability and environmental sustainability in the tea industry.
[学术文献 ] Pentyl leaf volatiles promote insect and pathogen resistance via enhancing ketol-mediated defense responses 进入全文
Plant Physiology 期刊
Plants emit an array of volatile organic compounds in response to stresses. Six-carbon green leaf volatiles (GLVs) and five-carbon pentyl leaf volatiles (PLVs) are fatty acid-derived compounds involved in intra- and inter-species communications. Unlike extensively studied GLVs, the biological activities of PLVs remain understudied. Maize (Zea mays L.) contains a unique monocot-specific lipoxygenase, ZmLOX6, that is unable to oxidize fatty acids and instead possesses a hydroperoxide lyase-like activity to specifically produce PLVs. Here, we show that disruption of ZmLOX6 reduced resistance to fall armyworm (FAW; Spodoptera frugiperda) and fungal pathogens Colletotrichum graminicola and Cochliobolus heterostrophus. Metabolite profiling revealed that reduced resistance to insects and pathogens was associated with decreased production of PLVs and ketols, including the better studied α-ketol, 9,10-KODA (9-hydroxy-10-oxo-12(Z)-octadecadienoic acid). Exogenous PLV and 9,10-KODA treatments rescued the resistance of lox6 mutants to FAW and the pathogens. Surprisingly, the susceptible-to-herbivory lox6 mutants produced greater levels of wound-induced jasmonates, suggesting potential substrate competition between JA and PLV pathway branches and highlighting a strong role of PLVs in defense against insects. Similarly, likely due to substrate competition between GLV and PLV synthesis pathways, in response to C. graminicola infection, lox6 mutants accumulated elevated levels of GLVs, which promote susceptibility to this pathogen. Mutation of the GLV-producing ZmLOX10 in the lox6 mutant background reversed the susceptibility to C. graminicola, unveiling the contrasting roles of PLVs and GLVs in resistance to this pathogen. Overall, this study uncovered a potent signaling role of PLVs in defense against insect herbivory and fungal pathogens with distinct lifestyles.
[学术文献 ] Is plant acoustic communication fact or fiction? 进入全文
New Phytologist 网站
In recent years, the idea has flourished that plants emit and perceive sound and could even be capable of exchanging information through the acoustic channel. While research into plant bioacoustics is still in its infancy, with potentially fascinating discoveries awaiting ahead, here we show that the current knowledge is not conclusive. While plants do emit sounds under biotic and abiotic stresses such as drought, these sounds are high-pitched, of low intensity, and propagate only to a short distance. Most studies suggesting plant sensitivity to airborne sound actually concern the perception of substrate vibrations from the soil or plant part. In short, while low-frequency, high-intensity sounds emitted by a loudspeaker close to the plant seem to have tangible effects on various plant processes such as growth – a finding with possible applications in agriculture – it is unlikely that plants can perceive the sounds they produce, at least over long distances. So far, there is no evidence of plants communicating with each other via the acoustic channel.
[学术文献 ] Agricultural biocontrol potential of bacterial volatile organic compounds (bVOCs) for enhanced crop protection 进入全文
Crop Protection 期刊
This review explores the diverse applications of bacterial volatile organic compounds (bVOCs) in agriculture, detailing the progression from understanding their composition to their practical implementation in the field. Emphasizing their environmentally friendly nature, bVOCs have shown efficacy in controlling pathogenic fungi and insects, inducing plant stress resistance, and promoting growth. Furthermore, leveraging VOC-'omics approaches can help unravel the complexities of bacterial volatile metabolites and their pathways, providing unique insights into their biocontrol mechanisms. This knowledge paves the way for developing innovative biological solutions to enhance sustainability in agriculture. Additionally, the review analyzes recent patent trends, showcasing notable inventions in bVOCs technologies and formulations, over the past decade. However, despite these advancements, challenges such as high processing costs and lengthy screening procedures remain significant barriers to widespread adoption. Overcoming these obstacles and ensuring plant quality through continued research are crucial for accelerating the integration of VOCs into mainstream agricultural practices.