special

您的位置: 首页 > 院士专题 > 专题列表

共检索到2066条,权限内显示50条;

[学术文献 ] Plant-to-plant defence induction in cotton is mediated bydelayed release of volatiles upon herbivory 进入全文

New Phytologist 期刊

Caterpillar feeding immediately triggers the release of volatile compounds stored in the leaves of cotton plants. Additionally, after 1 d of herbivory, the leaves release other newly synthesised volatiles. We investigated whether these volatiles affect chemical defences in neighbouring plants and whether such temporal shifts in emissions matter for signalling between plants. Undamaged receiver plants were exposed to volatiles from plants infested with Spodoptera caterpillars. For receiver plants, we measured changes in defence-related traits such as volatile emissions, secondary metabolites, phytohormones, gene expression, and caterpillar feeding preference. Then, we compared the effects of volatiles emitted before and after 24 h of damage on neighbouring plant defences. Genes that were upregulated in receiver plants following exposure to volatiles from damaged plants were the same as those activated directly by herbivory on a plant. Only volatiles emitted after 24 h of damage, including newly produced volatiles, were found to increase phytohormone levels, upregulate defence genes, and enhance resistance to caterpillars. These results indicate that the defence induction by volatiles is a specific response to de novo synthesised volatiles, suggesting that these compounds are honest signals of herbivore attack. These findings point to an adaptive origin of airborne signalling between plants.

[学术文献 ] Transcriptome analysis reveals the potential mechanism of the response to scale insects in Camellia sasanqua Thunb 进入全文

BMC Genomics 期刊

The scale insect was identified as Pseudaulacaspis sasakawai Takagi. We analyzed transcriptome sequencing data from leaves of C. sasanqua infested with scale insects. A total of 1320 genes were either up-regulated or down-regulated and differed significantly in response to scale insects. GO (Gene Ontology) annotation analysis showed that the pathway of catalytic activity, binding, membrane part, cell part, and cellular process were affected. KEGG (Kyoto Encyclopedia of Genes and Genomes) pathway analysis showed that most DEGs (differentially expressed genes) involved in plant hormone signal transduction, MAPK signaling pathway, flavonoid biosynthesis, tropane, piperidine and pyridine alkaloid biosynthesis. We also observed that the expression of galactose metabolism and carotenoid biosynthesis were significantly influenced. In addition, qRT-PCR (quantitative real-time PCR) validated the expression patterns of DEGs, which showed an excellent agreement with the transcriptome sequencing. Our transcriptomic analysis revealed that the C. sasanqua had an intricate resistance strategy to cope with scale insect attacks. After sensing the attack signal of scale insects, C. sasanqua activated the early signal MAPK (mitogen-activated protein kinase) to activate further transcription factors and Auxin, ET, JA, ABA, and other plant hormone signaling pathways, ultimately leading to the accumulation of lignin, scopolin, flavonoids and other secondary metabolites, produces direct and indirect resistance to scale insects. Our results suggested that it provided some potential resources of defense genes that would benefit the following resistance breeding in C. sasanqua to scale insects.

[学术文献 ] Effects of microbial biocontrol agents on tea plantation microecology and tea plant metabolism: a review 进入全文

Frontiers in Plant Science 期刲

The quality of fresh tea leaves is crucial to the final product, and maintaining microbial stability in tea plantations is essential for optimal plant growth. Unique microbial communities play a critical role in shaping tea flavor and enhancing plant resilience against biotic stressors. Tea production is frequently challenged by pests and diseases, which can compromise both yield and quality. While biotic stress generally has detrimental effects on plants, it also activates defense metabolic pathways, leading to shifts in microbial communities. Microbial biocontrol agents (MBCAs), including entomopathogenic and antagonistic microorganisms, present a promising alternative to synthetic pesticides for mitigating these stresses. In addition to controlling pests and diseases, MBCAs can influence the composition of tea plant microbial communities, potentially enhancing plant health and resilience. However, despite significant advances in laboratory research, the field-level impacts of MBCAs on tea plant microecology remain insufficiently explored. This review provides insights into the interactions among tea plants, insects, and microorganisms, offering strategies to improve pest and disease management in tea plantations.

[学术文献 ] Expecting the unexpected: Plant-mediated and indirect effects of biopesticides on arthropod pests and their natural enemies 进入全文

Current Opinion in Environmental Science & Health 期刊

Besides effects within the biopesticide-treated plants, we predict that biopesticides can influence multitrophic interactions in the agroecosystem due to their interactions between treated and neighboring nontreated plants, as well as indirect effects from volatile organic compounds released by biopesticides on the plant surface, which arthropod pests and their natural enemies use as cues for finding hosts or food resources.  Here we review and interpret empirical studies examining plant-mediated effects and indirect effects of biopesticides on arthropod pests and their entomophagous biological control agents in the context of pest management.  Unlike synthetic pesticides, most studies indicate conducive effects of biopesticides for pest management, considering the interactions among plants, pests, and natural enemies.  However, further efforts to understand plant-mediated and indirect effects of biopes ticides on interactions with natural enemies and plant–plant communication are needed to optimize their use in sustainable pest management strategies.

[学术文献 ] Assessment of Toxic Pyrrolizidine and Tropane Alkaloids in Herbal Teas and Culinary Herbs Using LC-Q-ToF/MS 进入全文

Foods 期刊

Pyrrolizidine alkaloids are secondary metabolites produced by plants as a defense against insects. These can cause acute or chronic toxicity in humans. Therefore, avoiding potential poisoning from the consumption of tea and culinary plants contaminated with pyrrolizidine alkaloids (PAs), pyrrolizidine alkaloids N-oxides (PANOs), and tropane alkaloids (TAs) is important for human health and food safety. Therefore, it is important to determine the levels of these substances with reliable and highly accurate methods. In this study, the PAs, PANOs, and TAs in herbal teas and culinary herbs sold in Turkish markets were identified and their levels were determined. Thus, the general profiles of herbal teas and culinary herbs in Turkey were revealed, and the compliance of the total amounts of PA and TA with the regulations was examined. The identification and quantification of 25 PAs and N-oxides and 2 TAs (atropine and scopolamine) in the samples was performed with a liquid chromatography-quadrupole time-of-flight tandem mass spectrometer (LC-Q-ToF/MS). At least a few of these substances were detected in all of the tested herbal teas and culinary herbs. The total contents of the black tea, green tea, mixed tea, flavored tea, chamomile tea, sage tea, linden tea, fennel tea, rosehip tea, peppermint, and thyme samples ranged from 4.6 ng g−1 to 1054.5 ng g−1. The results obtained shed light on the importance of analyzing the total dehydro PA, PANO, and TA amounts in plant-based products consumed in diets with sensitive and accurate methods, and they highlight the necessity of performing these analyses routinely in terms of food safety.

[学术文献 ] Plant responses to climate change: metabolic changes under combined abiotic stresses 进入全文

Journal of Experimental Botany 期刊

Climate change is predicted to increase the frequency and intensity of abiotic stress combinations that negatively impact plants and pose a serious threat to crop yield and food supply. Plants respond to episodes of stress combination by activating specific physiological and molecular responses, as well as by adjusting different metabolic pathways, to mitigate the negative effects of the stress combination on plant growth, development, and reproduction. Plants synthesize a wide range of metabolites that regulate many aspects of plant growth and development, as well as plant responses to stress. Although metabolic responses to individual abiotic stresses have been studied extensively in different plant species, recent efforts have been directed at understanding metabolic responses that occur when different abiotic factors are combined. In this review we examine recent studies of metabolomic changes under stress combination in different plants and suggest new avenues for the development of stress combination-resilient crops based on metabolites as breeding targets.

热门相关

意 见 箱

匿名:登录

个人用户登录

找回密码

第三方账号登录

忘记密码

个人用户注册

必须为有效邮箱
6~16位数字与字母组合
6~16位数字与字母组合
请输入正确的手机号码

信息补充