special

您的位置: 首页 > 院士专题 > 专题列表

共检索到2821条,权限内显示50条;

[学术文献 ] Green leaf volatile sensory calcium transduction in Arabidopsis 进入全文

Nature Communications 期刊

Plants perceive volatile organic compounds (VOCs) released by mechanically- or herbivore-damaged neighboring plants and induce various defense responses. Such interplant communication protects plants from environmental threats. However, the spatiotemporal dynamics of VOC sensory transduction in plants remain largely unknown. Using a wide-field real-time imaging method, we visualize an increase in cytosolic Ca2+ concentration ([Ca2+]cyt) in Arabidopsis leaves following exposure to VOCs emitted by injured plants. We identify two green leaf volatiles (GLVs), (Z)-3-hexenal (Z-3-HAL) and (E)-2-hexenal (E-2-HAL), which increase [Ca2+]cyt in Arabidopsis. These volatiles trigger the expression of biotic and abiotic stress-responsive genes in a Ca2+-dependent manner. Tissue-specific high-resolution Ca2+ imaging and stomatal mutant analysis reveal that [Ca2+]cyt increases instantly in guard cells and subsequently in mesophyll cells upon Z-3-HAL exposure. These results suggest that GLVs in the atmosphere are rapidly taken up by the inner tissues via stomata, leading to [Ca2+]cyt increases and subsequent defense responses in Arabidopsis leaves.

[学术文献 ] Systemic propagation of immunity in plants 进入全文

New Phytologist 期刊

Systemic immunity triggered by local plant–microbe interactions is studied as systemic acquired resistance (SAR) or induced systemic resistance (ISR) depending on the site of induction and the lifestyle of the inducing microorganism. SAR is induced by pathogens interacting with leaves, whereas ISR is induced by beneficial microbes interacting with roots. Although salicylic acid (SA) is a central component of SAR, additional signals exclusively promote systemic and not local immunity. These signals cooperate in SAR- and possibly also ISR-associated signaling networks that regulate systemic immunity. The non-SA SAR pathway is driven by pipecolic acid or its presumed bioactive derivative N-hydroxy-pipecolic acid. This pathway further regulates inter-plant defense propagation through volatile organic compounds that are emitted by SAR-induced plants and recognized as defense cues by neighboring plants. Both SAR and ISR influence phytohormone crosstalk towards enhanced defense against pathogens, which at the same time affects the composition of the plant microbiome. This potentially leads to further changes in plant defense, plant–microbe, and plant–plant interactions. Therefore, we propose that such inter-organismic interactions could be combined in potentially highly effective plant protection strategies.

[学术文献 ] Monoterpenes Support Systemic Acquired Resistance within and between Plants 进入全文

Plant Cell 期刊

This study investigates the role of volatile organic compounds in systemic acquired resistance (SAR), a salicylic acid (SA)-associated, broad-spectrum immune response in systemic, healthy tissues of locally infected plants. Gas chromatography coupled to mass spectrometry analyses of SAR-related emissions of wild-type and non-SAR-signal-producing mutant plants associated SAR with monoterpene emissions. Headspace exposure of Arabidopsis thaliana to a mixture of the bicyclic monoterpenes α-pinene and β-pinene induced defense, accumulation of reactive oxygen species, and expression of SA- and SAR-related genes, including the SAR regulatory AZELAIC ACID INDUCED1 (AZI1) gene and three of its paralogs. Pinene-induced resistance was dependent on SA biosynthesis and signaling and on AZI1 Arabidopsis geranylgeranyl reductase1 mutants with reduced monoterpene biosynthesis were SAR-defective but mounted normal local resistance and methyl salicylate-induced defense responses, suggesting that monoterpenes act in parallel with SA The volatile emissions from SAR signal-emitting plants induced defense in neighboring plants, and this was associated with the presence of α-pinene, β-pinene, and camphene in the emissions of the "sender" plants. Our data suggest that monoterpenes, particularly pinenes, promote SAR, acting through ROS and AZI1, and likely function as infochemicals in plant-to-plant signaling, thus allowing defense signal propagation between neighboring plants.

[学术文献 ] Uncovering the multifaceted properties of 6-pentyl-alpha-pyrone for control of plant pathogens 进入全文

Frontiers in Plant Science 期刊

Some volatile organic compounds (VOCs) produced by microorganisms have the ability to inhibit the growth and development of plant pathogens, induce the activation of plant defenses, and promote plant growth. Among them, 6-pentyl-alpha-pyrone (6-PP), a ketone produced by Trichoderma fungi, has emerged as a focal point of interest. 6-PP has been isolated and characterized from thirteen Trichoderma species and is the main VOC produced, often accounting for >50% of the total VOCs emitted. This review examines abiotic and biotic interactions regulating the production of 6-PP by Trichoderma, and the known effects of 6-PP on plant pathogens through direct and indirect mechanisms including induced systemic resistance. While there are many reports of 6-PP activity against plant pathogens, the vast majority have been from laboratory studies involving only 6-PP and the pathogen, rather than glasshouse or field studies including a host plant in the system. Biopesticides based on 6-PP may well provide an eco-friendly, sustainable management tool for future agricultural production. However, before this can happen, challenges including demonstrating disease control efficacy in the field, developing efficient delivery systems, and determining cost-effective application rates must be overcome before 6-PP’s potential for pathogen control can be turned into reality.

[学术文献 ] Small size, big impact: Small molecules in plant systemic immune signaling 进入全文

Current Opinion in Plant Biology 期刊

Plants produce diverse small molecules rapidly in response to localized pathogenic attack. Some of the molecules are able to migrate systemically as mobile signals, leading to the immune priming that protects the distal tissues against future infections by a broad-spectrum of invaders. Such form of defense is unique in plants and is known as systemic acquired resistance (SAR). There are many small molecules identified so far with important roles in the systemic immune signaling, some may have the potential to act as the mobile systemic signal in SAR establishment. Here, we summarize the recent advances in SAR research, with a focus on the role and mechanisms of different small molecules in systemic immune signaling.

[学术文献 ] Microbial Volatile Organic Compounds: Insights into Plant Defense 进入全文

Plants-Basel 期刊

Volatile organic compounds (VOCs) are low molecular weight molecules that tend to evaporate easily at room temperature because of their low boiling points. VOCs are emitted by all organisms; therefore, inter- and intra-kingdom interactions have been established, which are fundamental to the structuring of life on our planet. One of the most studied interactions through VOCs is between microorganism VOCs (mVOCs) and plants, including those of agricultural interest. The mVOC interactions generate various advantages for plants, ranging from promoting growth to the activation of defense pathways triggered by salicylic acid (systemic acquired resistance) and jasmonic acid (induced systemic resistance) to protect them against phytopathogens. Additionally, mVOCs directly inhibit the growth of phytopathogens, thereby providing indirect protection to plants. Among the current agricultural problems is the extensive use of chemicals, such as fertilizers, intended to combat production loss, and pesticides to combat phytopathogen infection. This causes problems in food safety and environmental pollution. Therefore, to overcome this problem, it is important to identify alternatives that do not generate environmental impacts, such as the application of mVOCs. This review addresses the protective effects of mVOCs emitted by microorganisms from different kingdoms and their implications in plant defense pathways.

首页上一页...6789下一页尾页

热门相关

意 见 箱

匿名:登录

个人用户登录

找回密码

第三方账号登录

忘记密码

个人用户注册

必须为有效邮箱
6~16位数字与字母组合
6~16位数字与字母组合
请输入正确的手机号码

信息补充