special

您的位置: 首页 > 院士专题 > 专题列表

共检索到114条,权限内显示50条;

[前沿资讯 ] 科学家研发新型去饱和化酶,解锁烯还原酶的逆反应性实现不对称去饱和化 进入全文

科学网

西湖大学叶宇轩课题组在Nature Chemistry期刊上发表了一篇题为“Unmasking the Reverse Catalytic Activity of ‘Ene’-Reductases for Asymmetric Carbonyl Desaturation”的研究成果。该论文解锁了烯还原酶的全新非天然去饱和化反应性,把它们从还原酶改造成为了去饱和化酶。合成了一系列含有远端四级手性中心的高价值环己烯酮产物;此酶催化反应体系条件温和、操作简单、易于放大;系统的机理研究加深了人们对于烯还原酶催化去饱和化过程中重要基元反应的理解。

[前沿资讯 ] AI模型设计六种性能更优蛋白质 进入全文

科学网

美国麻省总医院布莱根分院和贝斯以色列女执事医疗中心团队开发了一款名为EVOLVEpro的AI工具,被认为是蛋白质工程领域的一项重大突破。团队在最新一期《科学》杂志上展示了通过该工具设计的6种具有不同用途的蛋白质,证明了EVOLVEpro能够提高蛋白质的稳定性、精确度及效率。 团队使用EVOLVEpro对6种蛋白质进行了设计。结果显示,经过EVOLVEpro优化的两种单克隆抗体对目标的黏附力增强了30倍;微型CRISPR核酸酶执行基因编辑的效率提升了5倍;用于基因编辑的蛋白质在向基因组不同位置插入序列的能力提高了两倍;Bxb1整合酶在将DNA片段植入细胞以实现可编程基因整合的效率增加了4倍;而用于RNA合成的T7 RNA聚合酶,在准确复制RNA方面的能力更是提升了100倍。 团队指出,这款工具的最大优势在于它不受自然进化限制。借助AI,他们可以根据特定需求优化蛋白质,创造出性能更佳、速度更快、强度更高的蛋白质,使其更有效地与目标结合,进而改善治疗方法或增强其功能性。

[前沿资讯 ] 科学家设计出一种高效蛋白质口袋生成算法 进入全文

科学网

近日,中国科学技术大学认知智能全国重点实验室教授刘淇和哈佛大学医学院教授Marinka Zitnik 课题组合作,设计了深度生成算法PocketGen,用于生成与小分子结合的蛋白质口袋序列和空间结构。11月15日,相关研究成果发表于《自然-机器智能》。 该算法由双层图Transformer编码器和蛋白质预训练语言模型两部分组成。两者分别对应蛋白质的结构信息和序列信息。通过两个部分同时进行信息处理和不断迭代,最终生成所需要的蛋白质口袋。 PocketGen在计算效率和蛋白质口袋设计的成功率方面表现亮眼,是目前全球最高效、最高成功率的蛋白质口袋设计算法之一。在实验中,PocketGen模型不仅在亲和力和结构合理性等指标上超过传统方法,在计算效率方面也有大幅提高,相比传统方法提高10倍以上。审稿人也对该工作给予高度评价,认为“与最先进的方法相比,该方法显著提高了结合亲和力和有效性,表现出更快的性能和更高的成功率。” PocketGen推进了深度生成模型用于功能蛋白质设计,为进一步理解蛋白质设计规律并开展生物实验验证奠定了基础,未来在药物开发、生物传感器、酶催化等领域具有广泛的应用前景。

[前沿资讯 ] 学者提出萜类化合物合成新策略 进入全文

科学网

华南理工大学食品科学与工程学院教授娄文勇团队在研究中首次发现了异戊烯醇抑制酿酒酵母呼吸作用的现象,并针对该现象会导致人工合成萜类化合物途径效率低的问题,提出萜类化合物合成新策略,显著提升酿酒酵母适配性。相关成果近日在线发表于《自然-通讯》(Nature Communications)。 利用AtIPK和SmDAGK两个关键酶,该研究构建了依赖于IU途径的菌株策略,使得IU途径与细胞生长耦合,“迫使”细胞提高ATP合成,进而提升IU途径效率。对AtIPK和SmDAGK两个酶共46个位点随机饱和突变后,团队成功筛选出效率提高153%的有效突变体SmDAGK-S47A、L124A,以及AtIPK-S270P、A272R。 “我们提出的适配策略具有通用性,为高价值萜类化合物的合成提供了切实可行的技术支持。”论文共同通讯作者、华南理工大学食品科学与工程学院副教授曹宇飞表示。借助该策略,研究团队合成了三种常见萜类化合物——柠檬烯、角鲨烯和β-胡萝卜素。与对照组相比,其合成效率分别提高了695倍、850倍和18倍,充分表现出该类菌株在萜类化合物合成方面的巨大应用潜力。

[学术文献 ] Computational Design-Enabled Divergent Modification of Monoterpene Synthases for Terpenoid Hyperproduction 进入全文

ACS CATALYSIS

Enzymes’catalytic promiscuity enables the alteration of product specificity via protein engineering; yet, harnessing this promiscuity to achieve desired catalytic reactions remains challenging. Here, we identified HCinS, a monoterpene synthase (MTPS) with a high efficiency and specificity for 1,8-cineole biosynthesis. Quantum mechanics/molecular mechanics (QM/MM) simulations, which were performed based on the resolved crystal structure of HCinS, revealed the mechanistic details of the biosynthetic cascade reactions. Guided by these insights, in silico HCinS variants were designed with fine-tuned transition-state energies and reaction microenvironments. Three variants (T111A, N135H, F236M), each with one amino acid substitution, exhibited high specificity in the production of monocyclic (R)-α-terpineol, (R)-limonene, and acyclic myrcene, respectively, maintaining over 55% efficiency of native HCinS. These designed HCinS variants surpassed naturally evolved isozymes in catalytic capacity and enabled yeast to achieve the highest microbial titer of each corresponding terpene. Furthermore, the single mutation of four functional equivalent amino acids in other four identified TPSs, respectively, resulted in the expected shifts on product specificity as HCinS variants. This research offers insights into the mechanisms controlling the TPS’s product promiscuity and highlights the universal applicability of computational design in reshaping the product specificity of TPSs, thereby paving innovative avenues for creating enzymes with applications in chemistry and synthetic biology.

[学术文献 ] Enhancing Manganese Peroxidase Innovations in Genetic Modification, Screening Processes, and Sustainable Agricultural Applications 进入全文

Journal of Agricultural and Food Chemistry

Manganese peroxidase (MnP), a vital extracellular enzyme for the degradation of lignin and other organic pollutants, has demonstrated immense potential for agricultural and environmental applications, including straw pretreatment, feed fermentation, mycotoxin degradation, and water treatment. However, current research remains in its exploratory phase, with naturally sourced MnP unable to meet industrial-scale demands and no mature commercial enzyme preparations available on the market. This comprehensive review innovatively constructs a framework for MnP research, probing into its molecular conformation and catalytic principles, while providing an overview of the advancements in high-throughput screening and In silco designing strategies. Specifically, this review focuses on the practical applications of MnP in sustainable agriculture, elaborating on its potential and challenges in straw resource utilization, efficient feed fermentation, mycotoxin control, and water quality improvement. Furthermore, this review summarizes the recent achievements in optimizing MnP activity through enzyme engineering techniques and discuss customized mutation strategies tailored to specific agricultural and environmental requirements, thereby laying a solid theoretical foundation and scientific basis for the industrial production and commercialization of MnP.

首页上一页123456...下一页尾页

热门相关

意 见 箱

匿名:登录

个人用户登录

找回密码

第三方账号登录

忘记密码

个人用户注册

必须为有效邮箱
6~16位数字与字母组合
6~16位数字与字母组合
请输入正确的手机号码

信息补充