共检索到155条,权限内显示50条;
[前沿资讯 ] AI模型设计六种性能更优蛋白质 进入全文
科学网
美国麻省总医院布莱根分院和贝斯以色列女执事医疗中心团队开发了一款名为EVOLVEpro的AI工具,被认为是蛋白质工程领域的一项重大突破。团队在最新一期《科学》杂志上展示了通过该工具设计的6种具有不同用途的蛋白质,证明了EVOLVEpro能够提高蛋白质的稳定性、精确度及效率。 团队使用EVOLVEpro对6种蛋白质进行了设计。结果显示,经过EVOLVEpro优化的两种单克隆抗体对目标的黏附力增强了30倍;微型CRISPR核酸酶执行基因编辑的效率提升了5倍;用于基因编辑的蛋白质在向基因组不同位置插入序列的能力提高了两倍;Bxb1整合酶在将DNA片段植入细胞以实现可编程基因整合的效率增加了4倍;而用于RNA合成的T7 RNA聚合酶,在准确复制RNA方面的能力更是提升了100倍。 团队指出,这款工具的最大优势在于它不受自然进化限制。借助AI,他们可以根据特定需求优化蛋白质,创造出性能更佳、速度更快、强度更高的蛋白质,使其更有效地与目标结合,进而改善治疗方法或增强其功能性。
[前沿资讯 ] 科学家设计出一种高效蛋白质口袋生成算法 进入全文
科学网
近日,中国科学技术大学认知智能全国重点实验室教授刘淇和哈佛大学医学院教授Marinka Zitnik 课题组合作,设计了深度生成算法PocketGen,用于生成与小分子结合的蛋白质口袋序列和空间结构。11月15日,相关研究成果发表于《自然-机器智能》。 该算法由双层图Transformer编码器和蛋白质预训练语言模型两部分组成。两者分别对应蛋白质的结构信息和序列信息。通过两个部分同时进行信息处理和不断迭代,最终生成所需要的蛋白质口袋。 PocketGen在计算效率和蛋白质口袋设计的成功率方面表现亮眼,是目前全球最高效、最高成功率的蛋白质口袋设计算法之一。在实验中,PocketGen模型不仅在亲和力和结构合理性等指标上超过传统方法,在计算效率方面也有大幅提高,相比传统方法提高10倍以上。审稿人也对该工作给予高度评价,认为“与最先进的方法相比,该方法显著提高了结合亲和力和有效性,表现出更快的性能和更高的成功率。” PocketGen推进了深度生成模型用于功能蛋白质设计,为进一步理解蛋白质设计规律并开展生物实验验证奠定了基础,未来在药物开发、生物传感器、酶催化等领域具有广泛的应用前景。
[前沿资讯 ] 学者提出萜类化合物合成新策略 进入全文
科学网
华南理工大学食品科学与工程学院教授娄文勇团队在研究中首次发现了异戊烯醇抑制酿酒酵母呼吸作用的现象,并针对该现象会导致人工合成萜类化合物途径效率低的问题,提出萜类化合物合成新策略,显著提升酿酒酵母适配性。相关成果近日在线发表于《自然-通讯》(Nature Communications)。 利用AtIPK和SmDAGK两个关键酶,该研究构建了依赖于IU途径的菌株策略,使得IU途径与细胞生长耦合,“迫使”细胞提高ATP合成,进而提升IU途径效率。对AtIPK和SmDAGK两个酶共46个位点随机饱和突变后,团队成功筛选出效率提高153%的有效突变体SmDAGK-S47A、L124A,以及AtIPK-S270P、A272R。 “我们提出的适配策略具有通用性,为高价值萜类化合物的合成提供了切实可行的技术支持。”论文共同通讯作者、华南理工大学食品科学与工程学院副教授曹宇飞表示。借助该策略,研究团队合成了三种常见萜类化合物——柠檬烯、角鲨烯和β-胡萝卜素。与对照组相比,其合成效率分别提高了695倍、850倍和18倍,充分表现出该类菌株在萜类化合物合成方面的巨大应用潜力。
[前沿资讯 ] 天津工业生物所在谷氨酸棒杆菌全基因组规模筛选工业生产相关功能元件方面取得新突破 进入全文
中科院天津工业生物技术研究所
近日,中国科学院天津工业生物技术研究所实现了谷氨酸棒杆菌全基因组规模单基因过表达库的自动化构建与高通量筛选,鉴定了多个影响渗透压耐受性和氨基酸产量的新型功能元件。该研究利用天津工生所生物铸造厂,构建了覆盖谷氨酸棒杆菌全基因组99.7%的单基因过表达库,并建立了资源共享网站。同时,该研究通过全自动、实时生长曲线测定建立了新型功能元件的高通量筛选方法;通过全文库筛选获得了15个可提高渗透压耐受和L-赖氨酸产量的新元件,如新型转录调控因子和DNA修复蛋白,并揭示了渗透压耐受新机制。进一步,研究对近400个膜转运蛋白子库进行筛选,获得了在谷氨酸棒杆菌和大肠杆菌中高效、特异的新型L-苏氨酸外排蛋白。研究将新型外排蛋白应用于L-苏氨酸生产菌株改造,实现了目前最高水平的谷氨酸棒杆菌L-苏氨酸生产。
[前沿资讯 ] 中科院天津工业生物所等通过开发从头合成途径提高NMN产量 进入全文
中国科学院天津工业生物技术研究所
中国科学院天津工业生物技术研究所毕昌昊研究员带领的合成生物技术研究团队和张学礼研究员带领的微生物代谢工程团队合作,通过系统工程化改造大肠杆菌,成功开发了大肠杆菌中NMN的从头合成途径,有效提高了NMN的体内代谢产量。首先,研究人员通过基因编辑技术敲除了pncC和nadR基因,实现较原始菌株超过100倍的NMN产量提升;随后,研究人员对NMN 从头合成途径进行了优化,并将其与 NadV 介导的 NMN 生物合成途径整合,并引入两种转运蛋白增强了NAM的吸收和NMN的外排,将 NMN 产量提升至约1300 μM;最后,通过优化改造PRPP合成酶,进一步提升NMN产量,在摇瓶水平发酵24小时后超过 3000μM。该工作为NAD+补救途径及其在大肠杆菌能量代谢中的作用提供了新的见解,同时也有助于进一步推动合成生物学在生物制药和健康产业应用中的发展。
[前沿资讯 ] 中科院天津工业生物所开发定量异源途径设计方法,助力微生物产品合成途径的高效设计 进入全文
中国科学院天津工业生物技术研究所
中国科学院天津工业生物技术研究所生物设计中心开发了一个定量异源途径设计方法QHEPath。利用该方法,研究团队系统地评估了五种常用工业微生物在四种底物下合成300种生化产品的12,000个生物合成场景。结果表明,超过70%产品途径的理论得率有潜力通过引入合适的异源反应得到提升。同时,团队还总结了13种通用的途径优化策略,这些策略主要分为碳节约和能量节约两大类,其中五种策略对100多种产品的得率提升均有效。为了使生物学家能够更便捷地应用这一方法,团队还搭建了一个在线异源途径设计平台QHEPath (https://qhepath.biodesign.ac.cn/)。该平台能够定量计算并可视化35种微生物宿主中产品的高得率合成途径,并且成功预测了文献中多种产品的途径优化策略。