您的位置: 首页 > 农业专利 > 详情页

一种特征权重自学习的睡眠质量检测关键脑区判定方法
专利权人:
杭州电子科技大学
发明人:
彭勇,李晴熙
申请号:
CN201911269218.6
公开号:
CN111067513A
申请日:
2019.11.12
申请国别(地区):
CN
年份:
2020
代理人:
摘要:
本发明提供一种特征权重自学习的睡眠质量检测关键脑区判定方法;属于脑电信号识别领域。本发明的睡眠质量评估方法如下:一、首先是对脑电数据的获取与处理。二、对处理之后的脑电数据使用GRLSR模型进行分类并获得特征权重值。三、利用特征权重值筛选关键频段。四、利用特征权重值筛选关键脑区。本发明将半监督学习模型以及脑机接口技术融入到脑电检测领域中,可以筛选出脑电信息检测的关键频段以及关键脑区,并利用关键脑区大幅提高脑电识别的正确率。
来源网站:
中国工程科技知识中心
来源网址:
http://www.ckcest.cn/home/

意 见 箱

匿名:登录

个人用户登录

找回密码

第三方账号登录

忘记密码

个人用户注册

必须为有效邮箱
6~16位数字与字母组合
6~16位数字与字母组合
请输入正确的手机号码

信息补充