您的位置: 首页 > 农业专利 > 详情页

基于深度堆叠支持矩阵机的脑电信号识别方法
专利权人:
南京工业大学
发明人:
杭文龙,冯伟,梁爽,刘学军
申请号:
CN201910664430.6
公开号:
申请日:
2019.23.07
申请国别(地区):
CN
年份:
2020
代理人:
摘要:
本发明提供一种基于深度堆叠支持矩阵机的脑电信号识别方法,包括以下步骤:首先对脑电(Electroencephalogram,EEG)信号进行预处理并提取特征;用提取出的原始EEG信号特征作为输入训练第一层支持矩阵机(Support Matrix Machines,SMM)得到第一层的预测输出;利用矩阵随机投影将第一层预测输出投影到原始EEG特征空间并与原始EEG信号特征叠加得到第二层EEG信号特征,将其作为输入训练第二层SMM得到第二层的预测输出;按照这种方式得到更深层的EEG信号特征并训练SMM,直到精度收敛得到最终分类模型。本发明可以准确判断不同类型的EEG信号,保证基于EEG的BCI系统安全可靠的运行。
来源网站:
中国工程科技知识中心
来源网址:
http://www.ckcest.cn/home/

意 见 箱

匿名:登录

个人用户登录

找回密码

第三方账号登录

忘记密码

个人用户注册

必须为有效邮箱
6~16位数字与字母组合
6~16位数字与字母组合
请输入正确的手机号码

信息补充