共检索到371条,权限内显示50条;
[学术文献 ] CRISPR/Cas9: An RNA‐guided highly precise synthetic tool for plant genome editing 进入全文
Journal of Cellular Physiology
CRISPR/Cas9 is a newly developed and naturally occurred genome editing tool, which is originally used by bacteria for immune defence. In the past years, it has been quickly employed and modified to precisely edit genome sequences in both plants and animals. Compared with the well‐developed zinc finger nucleases (ZFNs) and transcription activator‐like effector nucleases (TALENs), CRISPR/Cas9 has lots of advantages, including easier to design and implement, higher targeting efficiency, and less expensive. Thus, it is becoming one of the most powerful tools for knockout of an individual gene as well as insertion of one gene and/or control of gene transcription. Studies have shown that CRISPR/Cas9 is a great tool to edit many genes in a variety of plant species, including the model plant species as well as agriculturally important crops, such as cotton, maize, wheat, and rice. CRISPR/Cas9‐based genome editing can be used for plant functional studies and plant improvement to yield, quality, and tolerance to environmental stress.
[学术文献 ] Salt tolerance of selected halophytes at the two initial growth stages for future management options 进入全文
scinetific reports
Scarcity of water and the small area of the agricultural land are considered as the crucial environmental issues challenged the Arabian Gulf countries. In this study, experiments were conducted to identify the salt tolerance during the germination and the seedling stages of some native halophytes in the State of Qatar. Seeds of eight native species (Salsola setifera, Halopeplis perfoliata, Caroxylon imbricatum, Suaeda aegyptiaca, Acacia tortilis, Limonium axillare, Tetraena qatarensis and Aeluropus lagopoides) were investigated. Except for Tetraena qatarensis, Acacia tortilis and Suaeda aegyptiaca, all achieved?≥?30% of seed germination at a concentration of 200 mM NaCl. Around 30% of Salsola setifera seeds were able to germinate in a salt concentration of 400 mM. Germination recovery of seeds that have been treated with 800 mM NaCl for 3 weeks was the greatest for Halopeplis perfoliata (94%) and the lowest for Aeluropus lagopoides (22%). Five halophytes were investigated for seedling growth under saline irrigation ranged from 0 to 600 mM NaCl. No significant differences obtained in growth biomass of seedlings of each of Caroxylon imbricatum, Suaeda aegyptiaca and Tetraena qatarensis between saline and non-saline treatments.
[学术文献 ] Comparative transcriptome and metabolome profiling reveal molecular mechanisms underlying OsDRAP1-mediated salt tolerance in rice 进入全文
scinetific reports
Integration of transcriptomics and metabolomics data can provide detailed information for better understanding the molecular mechanisms underlying salt tolerance in rice. In the present study, we report a comprehensive analysis of the transcriptome and metabolome of rice overexpressing the OsDRAP1 gene, which encodes an ERF transcription factor and was previously identified to be conferring drought tolerance. Phenotypic analysis showed that OsDRAP1 overexpression (OE) improved salt tolerance by increasing the survival rate under salt stress. OsDRAP1 affected the physiological indices such as superoxide dismutase (SOD), catalase (CAT) and malondialdehyde (MDA) to enhance redox homeostasis and membrane stability in response to salt stress. Higher basal expression of OsDRAP1 resulted in differential expression of genes that potentially function in intrinsic salt tolerance. A core set of genes with distinct functions in transcriptional regulation, organelle gene expression and ion transport were substantially up-regulated in the OE line in response to salt stress, implying their important role in OsDRAP1-mediated salt tolerance. Correspondingly, metabolome profiling detected a number of differentially metabolites in the OE line relative to the wild type under salt stress. These metabolites, including amino acids (proline, valine), organic acids (glyceric acid, phosphoenolpyruvic acid and ascorbic acid) and many secondary metabolites, accumulated to higher levels in the OE line, demonstrating their role in salt tolerance. Integration of transcriptome and metabolome analysis highlights the crucial role of amino acids and carbohydrate metabolism pathways in OsDRAP1-mediated salt tolerance.
[学术文献 ] Involvement of ethylene receptors in the salt tolerance response of Cucurbita pepo 进入全文
Horticulture Research
Abiotic stresses have a negative effect on crop production, affecting both vegetative and reproductive development. Ethylene plays a relevant role in plant response to environmental stresses, but the specific contribution of ethylene biosynthesis and signalling components in the salt stress response differs between Arabidopsis and rice, the two most studied model plants. In this paper, we study the effect of three gain-of-function mutations affecting the ethylene receptors CpETR1B, CpETR1A, and CpETR2B of Cucurbita pepo on salt stress response during germination, seedling establishment, and subsequent vegetative growth of plants. The mutations all reduced ethylene sensitivity, but enhanced salt tolerance, during both germination and vegetative growth, demonstrating that the three ethylene receptors play a positive role in salt tolerance. Under salt stress, etr1b, etr1a, and etr2b germinate earlier than WT, and the root and shoot growth rates of both seedlings and plants were less affected in mutant than in WT. The enhanced salt tolerance response of the etr2b plants was associated with a reduced accumulation of Na+ in shoots and leaves, as well as with a higher accumulation of compatible solutes, including proline and total carbohydrates, and antioxidant compounds, such as anthocyanin. Many membrane monovalent cation transporters, including Na+/H+ and K+/H+ exchangers (NHXs), K+ efflux antiporters (KEAs), high-affinity K+ transporters (HKTs), and K+ uptake transporters (KUPs) were also highly upregulated by salt in etr2b in comparison with WT. In aggregate, these data indicate that the enhanced salt tolerance of the mutant is led by the induction of genes that exclude Na+ in photosynthetic organs, while maintaining K+/Na+ homoeostasis and osmotic adjustment. If the salt response of etr mutants occurs via the ethylene signalling pathway, our data show that ethylene is a negative regulator of salt tolerance during germination and vegetative growth. Nevertheless, the higher upregulation of genes involved in Ca2+ signalling (CpCRCK2A and CpCRCK2B) and ABA biosynthesis (CpNCED3A and CpNCED3B) in etr2b leaves under salt stress likely indicates that the function of ethylene receptors in salt stress response in C. pepo can be mediated by Ca2+ and ABA signalling pathways.
[学术文献 ] The impaired biosynthetic networks in defective tapetum lead to male sterility in watermelon 进入全文
Journal of Proteomics Available online
Heterosis has been widely applied in watermelon breeding, because of the higher resistance and yield of hybrid. As the basis of heterosis utilization, genic male sterility (GMS) is an important tool for facilitating hybrid seed production, while the detailed mechanism in watermelon is still largely unknown. Here, we report a spontaneous mutant Se18 exhibited complete male sterility due to the uniquely multilayered tapetum and the un-meiotic pollen mother cells during pollen development. Using TMT based quantitative proteomic analyses, a total of 348 differentially abundant proteins (DAPs) were detected with the overwhelming majority down-regulated in mutant Se18. By analyzing the putative orthologs/homologs of Arabidopsis GMS related genes, the biosynthesis and transport of sporopollenin and tryphine precursors were predictably altered in mutant compared to its sibling wild type. Moreover, the general phenylpropanoid pathway as well as its related metabolisms was also expectably impaired in mutant, coincident with the pale yellow petals. Notably, some key transcriptional factors regulating tapetum development, together with their down-regulated targets, offered potentially valuable candidates regarding of male sterility. Collectively, the disrupted regulatory networks underlying male sterility of watermelon was proposed, which provide novel insights into genetic mechanism of male reproductive process and rich gene resources for future research.
[学术文献 ] Prunus Hexokinase 3 genes alter primary C-metabolism and promote drought and salt stress tolerance in Arabidopsis transgenic plants 进入全文
scinetific reports
Hexokinases (HXKs) and fructokinases (FRKs) are the only two families of enzymes in plants that have been identified as able to phosphorylate Glucose (Glc) and Fructose (Fru). Glc can only be phosphorylated in plants by HXKs, while Fru can be phosphorylated by either HXKs or FRKs. The various subcellular localizations of HXKs in plants indicate that they are involved in diverse functions, including anther dehiscence and pollen germination, stomatal closure in response to sugar levels, stomatal aperture and reducing transpiration. Its association with modulating programmed cell death, and responses to oxidative stress and pathogen infection (abiotic and biotic stresses) also have been reported. To extend our understanding about the function of HXK-like genes in the response of Prunus rootstocks to abiotic stress, we performed a detailed bioinformatic and functional analysis of hexokinase 3-like genes (HXK3s) from two Prunus rootstock genotypes, ‘M.2624’ (Prunus cerasifera Ehrh?×?P. munsoniana W.Wight & Hedrick) and ‘M.F12/1’ (P. avium L.), which are tolerant and sensitive to hypoxia stress, respectively. A previous large-scale transcriptome sequencing of roots of these rootstocks, showed that this HXK3-like gene that was highly induced in the tolerant genotype under hypoxia conditions. In silico analysis of gene promoters from M.2624 and M.F12/1 genotypes revealed regulatory elements that could explain differential transcriptional profiles of HXK3 genes. Subcellular localization was determinates by both bioinformatic prediction and expression of their protein fused to the green fluorescent protein (GFP) in protoplasts and transgenic plants of Arabidopsis. Both approaches showed that they are expressed in plastids. Metabolomics analysis of Arabidopsis plants ectopically expressing Prunus HXK3 genes revealed that content of several metabolites including phosphorylated sugars (G6P), starch and some metabolites associated with the TCA cycle were affected. These transgenic Arabidopsis plants showed improved tolerance to salt and drought stress under growth chamber conditions. Our results suggest that Prunus HXK3 is a potential candidate for enhancing tolerance to salt and drought stresses in stone fruit trees and other plants.