您的位置: 首页 > 农业专利 > 详情页

基于随机森林和卷积神经网络的脑电数据分类方法
专利权人:
同济大学
发明人:
何良华,任强
申请号:
CN201910745397.X
公开号:
CN110543832A
申请日:
2019.13.08
申请国别(地区):
CN
年份:
2019
代理人:
摘要:
本发明涉及一种基于随机森林和卷积神经网络的脑电数据分类方法,包括:S1、采集原始的时序脑电数据,并将时序脑电数据转换为频域脑电数据;S2、基于随机森林方法,对频域脑电数据进行导联筛选,以对频域脑电数据进行降维处理;S3、构建卷积神经网络,将降维之后的频域脑电数据输入给卷积神经网络,对卷积神经网络进行训练和测试,得到训练好的卷积神经网络;S4、结合随机森林方法以及训练好的卷积神经网络,对经过傅里叶转换的实际脑电数据依次进行导联筛选和分类。与现有技术相比,本发明利用随机森林筛选重要的特征,降低了脑电数据维度,减少了计算量;结合卷积神经网络对降维的脑电数据进行拟合,保证了脑电数据分类准确率。
来源网站:
中国工程科技知识中心
来源网址:
http://www.ckcest.cn/home/

意 见 箱

匿名:登录

个人用户登录

找回密码

第三方账号登录

忘记密码

个人用户注册

必须为有效邮箱
6~16位数字与字母组合
6~16位数字与字母组合
请输入正确的手机号码

信息补充