Plants have emerged as an alternative expression system and are increasingly being used byindustry and academia for producing target proteins. However, the ability of plants to glycosylate proteins can be a significant limitation for those proteins, which do not require N- glycosylation. For example, Plasmodium falciparum proteins, or A chain of human factor XIIIdo not carry N-linked glycans, or the protective antigen (PA) of Bacillus anthracisis not a glycoprotein; however, these proteins contain potential N-linked glycosylation sites that can be aberrantly glycosylated during expression in yeast, mammalian, or plant systems, potentially leading toreduced functionality and immunogenicity because of incorrect/altered folding and/or masking of epitopes. To overcome this problem we have recently developed a strategy of enzymatic deglycosylation of proteins in vivo by co-expressing with bacterial PNGase F (Peptide: N-glycosidase F) using transient expression in plants (WIPO Patent Application WO/2012/170678), which allowed production of malaria vaccine candidate Pfs48/45, which can provide ahigh transmission blocking (TB) activity (Mamedov et al., 2012). In addition, other deglycosylated antigens induced significantly higher levels of toxin-neutralizing antibody responses in mice than compared with glycosylated forms (Mamedov et al, manuscript has been submitted). Although a PNGase F treatment (in vivodeglycosylation) removes the oligosaccharide intact, but causes amino acid change in the deglycosylated protein due to deamidation of the asparagine (N) in the NxS/T site (sequence) into an aspartate (D). In this study, a strategy was developed for production of target proteins in plants in non-N-glycosylated form, but with no amino acid change in the NxS/T site of the resulting deglycosylated proteins, which can provide production of non-N- glycosylated recombinant proteins in plants or other eukaryotic system with a native-like fold. Thus, materials and methods for in v