一种基于脑电波的网瘾检测方法及系统
- 专利权人:
- 西北大学
- 发明人:
- 胡景钊,刘阳,姜博,冯筠
- 申请号:
- CN201910307964.3
- 公开号:
- CN110123342B
- 申请日:
- 2019.04.17
- 申请国别(地区):
- CN
- 年份:
- 2021
- 代理人:
- 摘要:
- 本发明公开了一种基于脑电波的网瘾检测方法和系统,首先采集不同测试者的脑电波信号,计算滤波处理后的脑电波信号能量特征矩阵;然后对能量特征矩阵进行训练,获得训练好的分类模型;最后将被测试者的脑电波信号输入分类模型中,输出被测试者的网瘾程度。本发明将脑电波与网瘾检测相结合,通过采集不同网瘾程度的青少年上网后的脑电波信息,使用基于深度学习映射核函数的ELM训练分类模型,使用该模型对青少年的网瘾程度进行判断,该分类模型在保证学习精度的前提下,比传统训练模型具有更快的学习速度和更强的泛化能力。有助于改善过去网瘾判断的主观性,为医师判断青少年网络成瘾提供一种客观的真实的辅助诊断方案。
- 来源网站:
- 中国工程科技知识中心