special

您的位置: 首页 > 院士专题 > 专题列表

共检索到56条,权限内显示50条;

[学术文献 ] Bioremediation of complex organic pollutants by engineered Vibrio natriegens 进入全文

Nature

Industrial wastewater, petroleum pollution and plastic contamination are significant threats to global marine biosecurity because of their toxic, mutagenic and persistent nature1. The use of microorganisms in bioremediation has been constrained by the complexity of organic pollutants and limited tolerance to saline stress2. In this study, we used synthetic biology to engineer Vibrio natriegens into a strain capable of bioremediating complex organic pollutants in saline wastewater and soils. The competence master regulator gene tfoX was inserted into chromosome 1 of the V. natriegens strain Vmax and overexpressed to enhance DNA uptake and integration. Degradation gene clusters were chemically synthesized and assembled in yeast. We developed a genome engineering method (iterative natural transformation based on Vmax with amplified tfoX effect) to transfer five gene clusters (43 kb total) into Vmax. The engineered strain has the ability to bioremediate five organic pollutants (biphenyl, phenol, naphthalene, dibenzofuran and toluene) covering a broad substrate range, from monocyclic to multicyclic compounds, in industrial wastewater samples from a chlor–alkali plant and a petroleum refinery.

[学术文献 ] Chromatin loops are an ancestral hallmark of the animal regulatory genome 进入全文

Nature

In bilaterian animals, gene regulation is shaped by a combination of linear and spatial regulatory information. Regulatory elements along the genome are integrated into gene regulatory landscapes through chromatin compartmentalization1,2, insulation of neighbouring genomic regions3,4 and chromatin looping that brings together distal cis-regulatory sequences5. However, the evolution of these regulatory features is unknown because the three-dimensional genome architecture of most animal lineages remains unexplored6,7. To trace the evolutionary origins of animal genome regulation, here we characterized the physical organization of the genome in non-bilaterian animals (sponges, ctenophores, placozoans and cnidarians)8,9 and their closest unicellular relatives (ichthyosporeans, filastereans and choanoflagellates)10 by combining high-resolution chromosome conformation capture11,12 with epigenomic marks and gene expression data. Our comparative analysis showed that chromatin looping is a conserved feature of genome architecture in ctenophores, placozoans and cnidarians. These sequence-determined distal contacts involve both promoter–enhancer and promoter–promoter interactions. By contrast, chromatin loops are absent in the unicellular relatives of animals. Our findings indicate that spatial genome regulation emerged early in animal evolution. This evolutionary innovation introduced regulatory complexity, ultimately facilitating the diversification of animal developmental programmes and cell type repertoires.

[学术文献 ] Overexpression of StTCP10 Alters Tuber Number and Size in Potato (Solanum tuberosum L.) 进入全文

Plants

Potato (Solanum tuberosum L.), cultivated worldwide for its nutrient-rich underground tubers, represents a crucial staple crop whose yield is primarily determined by both tuber number and tuber size. TCP transcription factors, especially TCP containing miR319 binding sites, play pivotal roles in plant growth and development, yet their functions in potato tuber number and size remain largely unexplored. In this study, we systematically identified 32 TCP genes in potato harboring the conserved TCP domain, among which six were predicted to contain binding sites for Stu-miR319. Semi-quantitative experiments revealed that StTCP10 exhibited the highest expression levels in stolons, swollen stolons, and tuber tissues compared to other StTCP genes containing miR319 binding sites. To elucidate its biological function, we generated StTCP10-overexpressing transgenic potato lines through Agrobacterium-mediated genetic transformation. Phenotypic analysis demonstrated that overexpression of StTCP10 reduced tuber number per plant while enhancing tuber size, with no significant change in total yield. These findings reveal that StTCP10 with Stu-miR319 binding sites plays a critical role in tuber size and mediates the trade-off between tuber size and number, providing novel insights into the molecular breeding aimed at improving tuber size.

[学术文献 ] Expediting genome synthesis of Corynebacterium glutamicum with an artificial chromosome vector 进入全文

Trends in Biotechnology

Recent advances in genome synthesis have relied on scalable DNA assembly and delivery, and efficient recombination techniques. While these methods have enabled rapid progress for Escherichia coli and yeast, they are often inadequate for other microorganisms. Here, we devised a Corynebacterium glutamicum artificial chromosome (CAC), which combines a replicating system from a closely related strain with an innate partitioning system. This CAC vector can efficiently deliver DNA fragments up to 56 kb and maintain stability in C. glutamicum. Leveraging the CAC vector, we developed CAC Excision Enhanced Recombination (CACEXER), a streamlined strategy for iterative genome replacements in C. glutamicum. Using this approach, we integrated 361 kb (11%) of synthetic DNA into the genome, creating semi-synCG-A. This strain paves the way to establish C. glutamicum as the third industrial microorganism, alongside E. coli and Saccharomyces cerevisiae, to undergo large-scale genome synthesis.

[学术文献 ] The phased pan-genome of tetraploid European potato 进入全文

Nature

Potatoes were first brought to Europe in the sixteenth century. Two hundred years later, one of the species had become one of the most important food sources across the entire continent and, later, even the entire world. However, its highly heterozygous, autotetraploid genome has complicated its improvement since then. Here we present the pan-genome of European potatoes generated from phased genome assemblies of ten historical potato cultivars, which includes approximately 85% of all haplotypes segregating in Europe. Sequence diversity between the haplotypes was extremely high (for example, 20× higher than in humans), owing to numerous introgressions from wild potato species. By contrast, haplotype diversity was very low, in agreement with the population bottlenecks caused by domestication and transition to Europe. To illustrate a practical application of the pan-genome, we converted it into a haplotype graph and used it to generate phased, megabase-scale pseudo-genome assemblies of commercial potatoes (including the famous French fries potato ‘Russet Burbank’) using cost-efficient short reads only. In summary, we present a nearly complete pan-genome of autotetraploid European potato, we describe extraordinarily high sequence diversity in a domesticated crop, and we outline how this resource might be used to accelerate genomics-assisted breeding and research.

[学术文献 ] Colony pattern multistability emerges from a bistable switch 进入全文

PNAS

Microbial colony development hinges upon a myriad of factors, including mechanical, biochemical, and environmental niches, which collectively shape spatial patterns governed by intricate gene regulatory networks. The inherent complexity of this phenomenon necessitates innovative approaches to comprehend and compare the mechanisms driving pattern formation. Here, we unveil the multistability of bacterial colony patterns, where bacterial colony patterns can stabilize into multiple distinct types including ring-like patterns and sector-like patterns on hard agar, orchestrated by a simple synthetic bistable switch. Utilizing quantitative imaging and spatially resolved transcriptome approaches, we explore the deterministic process of a ring-like colony pattern formation from a single cell. This process is primarily driven by bifurcation events programmed by the gene regulatory network and microenvironmental cues. Additionally, we observe a noise-induced process amplified by the founder effect, leading to patterns of symmetry-break during range expansion. The degrees of asymmetry are profoundly influenced by the initial conditions of single progenitor cells during the nascent stages of colony development. These findings underscore how the process of range expansion enables individual cells, exposed to a uniform growth-promoting environment, to exhibit inherent capabilities in generating emergent, self-organized behavior.

热门相关

意 见 箱

匿名:登录

个人用户登录

找回密码

第三方账号登录

忘记密码

个人用户注册

必须为有效邮箱
6~16位数字与字母组合
6~16位数字与字母组合
请输入正确的手机号码

信息补充