共检索到56条,权限内显示50条;
[学术文献 ] Analysis of plant physiological responses based on leaf color changes through the development and application of a wireless plant sensor 进入全文
Sensing and Bio-Sensing Research
Optical sensing has been used to monitor the physiological responses of plants noninvasively and in real-time. In this study, we developed a low-cost plant sensor that performed a spectroscopic measurement at eight wavelengths in the visible region. The sensor head of the system was attached directly to the underside of the leaf, not blocking the light, and eliminating correction work because of the constant distance between the sensor head and the sample. The collected data was shared in the cloud via a network, thereby enabling remote monitoring. The characteristics of the plant sensor as a spectral photometer were validated, with major wavelengths also showing good correlations with those of a conventional spectrometer. The reflectance of 620 nm in this sensor detected plant aging indicator chlorophyll, and 550 nm detected stress indicator xanthophyll. In the field test, these plant physiological responses, seasonal leaf color changes and environmental stresses, were observed remotely. The results indicate that the novel spectroscopic measurement from the underside of the leaf is effective to realize accurate and stable measurement of the plant leaf. The plant sensor can be a powerful tool in the field of agriculture and ecological study by realizing simultaneous, multi-point and remote monitoring at a low cost.
[学术文献 ] A quest for the potato of the future: characterization of wild tuber-bearing Solanum species for de novo domestication 进入全文
Journal of Experimental Botany
Potato (Solanum tuberosum) is a staple food worldwide, but modern potato cultivation relies heavily on the use of pesticides to control pests and diseases. However, many wild Solanum species are highly resistant to biotic and abiotic stresses relevant to potato production. Several of those species have been used in potato breeding to confer resistance but this has only been moderately successful. Instead, we propose an alternative approach to utilize the potential of wild Solanum germplasm. Recently, de novo domestication has been suggested to produce more resilient crops: instead of introducing resistance genes into existing crops, domestication traits could be introduced into resistant wild crop relatives to create new crops. Therefore, we selected 10 promising species from the 107 known wild tuber-bearing Solanum species for their resistance to biotic and abiotic stresses. Selection was based on the existing literature, characterizing species by tuberization under short- and long-day conditions, tuber glycoalkaloid content, starch digestibility and performance in tissue culture. Based on this, the highly pest- and disease-resistant S. bulbocastanaum was chosen. Our results showed that it produced relatively large tubers, also under long-day conditions, and performed exceptionally well in tissue culture.
[学术文献 ] Designer peptide–DNA cytoskeletons regulate the function of synthetic cells 进入全文
Nature Chemistry
The bottom-up engineering of artificial cells requires a reconfigurable cytoskeleton that can organize at distinct locations and dynamically modulate its structural and mechanical properties. Here, inspired by the vast array of actin-binding proteins and their ability to reversibly crosslink or bundle filaments, we have designed a library of peptide–DNA crosslinkers varying in length, valency and geometry. Peptide filaments conjoint through DNA hybridization give rise to tactoid-shaped bundles with tunable aspect ratios and mechanics. When confined in cell-sized water-in-oil droplets, the DNA crosslinker design guides the localization of cytoskeletal structures at the cortex or within the lumen of the synthetic cells. The tunable spatial arrangement regulates the passive diffusion of payloads within the droplets and complementary DNA handles allow for the reversible recruitment and release of payloads on and off the cytoskeleton. Heat-induced reconfiguration of peptide–DNA architectures triggers shape deformations of droplets, regulated by DNA melting temperatures. Altogether, the modular design of peptide–DNA architectures is a powerful strategy towards the bottom-up assembly of synthetic cells.
[学术文献 ] Forage conservation is a neglected nitrous oxide source 进入全文
PNAS Nexus
Agricultural activities are the major anthropogenic source of nitrous oxide (N2O), an important greenhouse gas and ozone-depleting substance. However, the role of forage conservation as a potential source of N2O has rarely been studied. We investigated N2O production from the simulated silage of the three major crops—maize, alfalfa, and sorghum—used for silage in the United States, which comprises over 90% of the total silage production. Our findings revealed that a substantial N2O could be generated, potentially placing forage conservation as the third largest N2O source in the agricultural sector. Notably, the application of chlorate as an additive significantly reduced N2O production, but neither acetylene nor intermittent exposure to oxygen showed any impact. Overall, the results highlight that denitrifiers, rather than nitrifiers, are responsible for N2O production from silage, which was confirmed by molecular analyses. Our study reveals a previously unexplored source of N2O and provides a crucial mechanistic understanding for effective mitigation strategies.
[学术文献 ] Harnessing clonal gametes in hybrid crops to engineer polyploid genomes 进入全文
Nature
Heterosis boosts crop yield; however, harnessing additional progressive heterosis in polyploids is challenging for breeders. We bioengineered a ‘mitosis instead of meiosis’ (MiMe) system that generates unreduced, clonal gametes in three hybrid tomato genotypes and used it to establish polyploid genome design. Through the hybridization of MiMe hybrids, we generated ‘4-haplotype’ plants that encompassed the complete genetics of their four inbred grandparents, providing a blueprint for exploiting polyploidy in crops.
[学术文献 ] Genomic selection in plant breeding: Key factors shaping two decades of progress 进入全文
ELSEVIER
Genomic selection, the application of genomic prediction (GP) models to select candidate individuals, has significantly advanced in the past two decades, effectively accelerating genetic gains in plant breeding. This article provides a holistic overview of key factors that have influenced GP in plant breeding during this period. We delved into the pivotal roles of training population size and genetic diversity, and their relationship with the breeding population, in determining GP accuracy. Special emphasis was placed on optimizing training population size. We explored its benefits and the associated diminishing returns beyond an optimum size. This was done while considering the balance between resource allocation and maximizing prediction accuracy through current optimization algorithms. The density and distribution of single-nucleotide polymorphisms, level of linkage disequilibrium, genetic complexity, trait heritability, statistical machine-learning methods, and non-additive effects are the other vital factors. Using wheat, maize, and potato as examples, we summarize the effect of these factors on the accuracy of GP for various traits. The search for high accuracy in GP-theoretically reaching one when using the Pearson's correlation as a metric-is an active research area as yet far from optimal for various traits. We hypothesize that with ultra-high sizes of genotypic and phenotypic datasets, effective training population optimization methods and support from other omics approaches (transcriptomics, metabolomics and proteomics) coupled with deep-learning algorithms could overcome the boundaries of current limitations to achieve the highest possible prediction accuracy, making genomic selection an effective tool in plant breeding.