The invention relates to device (1) for measuring volumes of a liquid in a container (B) by means of measuring emitted high-frequency radiation, comprising control unit (C), a transmitter (TX), at least one first transmitting antenna (ANT_TX1) and at least one second transmitting antenna (ANT_TX2), at least one receiving antenna (ANT_RX1) and a receiver (RX), wherein the transmitter (TX) is configured to emit high-frequency radiation when in operation, wherein the first transmitting antenna (ANT_TX1) and the second transmitting antenna (ANT_TX2) are configured to emit high-frequency radiation during operation so that radiation can reach the container (B), wherein first receiving antenna (ANT_RX1) is configured to record high-frequency radiation reflected from the container (B), wherein the receiver (RX) is configured to take up the high-frequency radiation received by the receiving antenna (ANT_RX1), wherein the control unit (C) is configured to control the transmitters so that the transmitter (TX) emits high-frequency radiation, and wherein the control unit (C) is also configured to evaluate high-frequency radiation taken up by the receiver (RX) so that a measurement of the volume of the liquid in the container (B) is determined, wherein the measurement of the volume of liquid in the container (B) is determined from channel state information. The invention also relates to device (1) for measuring volumes of a liquid in a container (B) by means of measuring emitted high-frequency radiation, comprising a control unit (C), a transmitter (TX), at least one first transmitting antenna (ANT_TX1) and at least one second transmitting antenna (ANT_TX2), a least one first receiving antenna (ANT_RX1) and a second receiving antenna (ANT_RX2) and a receiver (RX), wherein the transmitter (TX) is configured to emit high-frequency radiation when in operation, wherein the first transmitting antenna (ANT_TX1) and the second transmitting antenna (ANT_TX2) are configured to emit high-frequency radiation during operation so that radiation can reach the container (B), wherein the first receiving antenna (ANT_RX1) is configured to record high-frequency radiation reflected from the container (B), wherein the second receiving antenna (ANT_RX2) is configured to record high-frequency radiation transmitted from the container (B), wherein the control unit (C) is configured to control the transmitters so that the transmitter (TX) emits high-frequency radiation, and wherein the control unit (C) is also configured up to evaluate high-frequency radiation taken up by the receiver (RX) so that a measurement of the volume of the liquid in the container (B) is determined, wherein the measurement of the volume of liquid in the container (B) is determined from channel state information.