The invention provides a method for assessing cardiac valve regurgitation. The method includes obtaining 4D ultrasound data of a region of interest, wherein the region of interest comprises a cardiac valve. The 4D ultrasound data comprises a time sequence of 3D ultrasound images comprising B-mode ultrasound data and color Doppler ultrasound data. Image stabilization is performed on the images of the time sequence of 3D ultrasound images and a dynamic jet is then segmented from the time sequence of stabilized 3D ultrasound images. A dynamic surface model is fit to the valve in the time sequence of stabilized 3D ultrasound images based on the segmented jet. The method further includes identifying a dynamic regurgitant orifice based on the applied surface model and the time sequence of stabilized 3D ultrasound images and fitting a flow convergence model to the time sequence of stabilized 3D ultrasound images based on the identified dynamic regurgitant orifice. A regurgitant flow is then estimated based on the identified regurgitant orifice.