Provided are assemblies having composite structures interlocked with shape memory alloy structures and methods of fabricating such assemblies. Interlocking may involve inserting an interlocking protrusion of a shape memory alloy structure into an interlocking opening of a composite structure and heating at least this protrusion of the shape memory alloy structure to activate the alloy and change the shape of the protrusion. This shape change engages the protrusion in the opening such that the protrusion cannot be removed from the opening. The shape memory alloy structure may be specifically trained prior to forming an assembly using a combination of thermal cycling and deformation to achieve specific pre-activation and post-activation shapes. The pre-activation shape allows inserting the interlocking protrusion into the opening, while the post-activation shape engages the interlocking protrusion within the opening. As such, activation of the shape memory alloy interlocks the two structures.