The Near-field Optical Transmission Electron Emission Microscope involves the combination, in one instrument, of optical imaging in the near-field regime or close to it (in respect to the transmission electromagnetic radiation when the wavelength exceeds the desired lateral resolution) and the secondary electron imaging of EEM microscope (“Cathode lens objective” based Emission Electron Microscopy). These two microscopic techniques are combined by the application of the photon-electron converter, which converts the optical, transmission image of the object (illuminated by the penetrating electromagnetic radiation) to the correlated photoelectron image, by means of a matrix of one-way closed channels (capillaries). The closed, smooth front face of the converter (comprising channel-bottoms) remains in contact with the object of imaging, whereas its opposite, opened face (consisting of an array (matrix) of channel openings) is exposed to vacuum and emits the secondary electrons.