Network-based relative proximity measures according to the present invention quantify the closeness between any two sets of nodes (e.g., drug targets and disease genes in a biological network, or groups of people in a social network). The proximity takes into account the scale-free nature of real-world networks and corrects for degree-bias (i.e., due to incompleteness or study biases) by incorporating various distance definitions between the two sets of nodes and comparison of these distances to those of randomly selected nodes in the network (i.e., the distance relative to random expectation), therefore improving processing of the network data. In brief, the proximity offers a formal framework to characterize the distance between two sets of nodes in the network with key applications in various domains from network pharmacology (e.g., discovering novel uses for existing drugs) to social sciences (e.g., defining similarity between groups of individuals).