The present invention relates to a method for gasification of carbon-containing materials including biohazard wastes, and more specifically, to a method for gasification of carbon-containing materials which allows an increase in carbon efficiency and a reduction in carbon dioxide emission, comprising the steps of: biohazard wastes grinding and sterilization, mix with carbon-containing materials for the gasification; and catalytic production of diesel fuel. A system having a movable platform including: material preparation block, gasification and catalytic of diesel fuel production reactors which are structurally and functionally integrated. In the practice of the process, a mixture of carbon-containing materials, a compressed air feed and process steam is fed to the gasifier to produce a synthesis gas. The synthesis gas is fed to the Fischer-Tropsch reactor where it is catalytically reacted to produce heavy hydrocarbons. The outlet from the Fischer-Tropsch reactor is separated into water, a low heating value tail gas, and the desired hydrocarbon liquid product. The water is pressurized and heated to generate process steam. The system further includes a plurality of heat exchangers that enable heat to be recovered from the outlet of the gasifier. The recovered heat is used to make the process steam as well as to preheat the hydrocarbon mix before it is fed to the gasifier and preheat the synthesis gas before it is fed to the Fischer-Tropsch reactor. The method of the present invention greatly increases carbon efficiency and reduces the generation of carbon dioxide.