The invention is generally related to an intervertebral implant for replacing an intervertebral disc of the human spine. The intervertebral implant includes a first conformable endplate, the first conformable endplate being conformable to a boney vertebral endplate under an anatomical load, a second endplate and a core between the endplates, wherein the first conformable endplate partitions the core from the boney vertebral endplate, whereby the core does not contact the boney vertebral endplate. The invention is also directed to a method of replacing an intervertebral disc. The method includes removing at least a portion of an intervertebral disc to form an intervertebral disc space, implanting a first conformable endplate, into the intervertebral disc space and in contact with a first honey vertebral endplate, the first conformable endplate being conformable to the first boney vertebral endplate under an anatomical load; implanting a second endplate into the intervertebral disc space and in contact with a second boney vertebral endplate; and implanting a core between the first conformable endplate and the second endplate, wherein the first conformable endplate partitions the core from the first boney vertebral endplate, whereby the core does not contact the first boney vertebral endplate.