The invention provides for a magnetic resonance imaging system. Instructions cause a processor (136) controlling the magnetic resonance imaging system to modify (200) pulse sequence data by omitting at least some of the phase encodings (408) that encode for volumes outside of the field of view. The pulse sequence data specifies the acquisition of a stack (128) of two dimensional slices of a field of view (126). The pulse sequence data further specifies phase encoding in a direction (130) perpendicular to the two dimensional slices. The pulse sequence data specifies a maximum SEMAC factor (400). The maximum SEMAC factor specifies a maximum number of phase encoding steps in the perpendicular direction for each of the two dimensional slices. The instructions further cause the processor to determine (202) a slice SEMAC factor for each of the stack of two dimensional slices. The slice SEMAC factor is determined by counting the phase encoding steps that encode for regions within the field of view. The instructions further cause the processor to modify (204) the pulse sequence data by dividing the stack of two dimensional slices into multiple packages (502, 504). Slices within each of the multiple packages are ordered using an outer linear profile in the perpendicular direction. The stack of two dimensional slices are divided into the multiple packages by grouping slices which have a slice SEMAC factor within a predetermined range. Each of the multiple packages is acquired as a series of pulse sequence repetitions. The instructions further cause the processor to modify (206) the pulse sequence data by reordering the profile order of a package to remove at least some of the phase encodings outside of the field of view.