基于卷积神经网络的心率失常分类算法
- 专利权人:
- 四川大学
- 发明人:
- 李智,牟文锋,李健
- 申请号:
- CN201910298194.0
- 公开号:
- CN110313894A
- 申请日:
- 2019.15.04
- 申请国别(地区):
- CN
- 年份:
- 2019
- 代理人:
- 摘要:
- 本发明公开了一种基于卷积神经网络的心律失常分类算法,包括提出的适用于心电信号这一稀疏图像的小尺度类型的Deep‑LeNet网络,利用小卷积核的特点,使得网络的分类耗时更短,得到的准确率很高。其次,还提出了多尺度卷积神经网络,不但能够增加网络的宽度,还增加了网络对尺度大小的适应性,使得网络更适用于稀疏图像的识别。在极小的增加网络耗时的情况之下,能够极大的增加网络的分类准确率,而且这样一体的识别与分类流程,更能够用于家庭医疗级诊断,对心律失常的准确识别有着重要的意义。
- 来源网站:
- 中国工程科技知识中心