A spiral inertial filtration device is capable of high-throughput (1 mL/min), high- purity particle separation while concentrating recovered target particles by more than an order of magnitude. Large fractions of sample fluid are removed from a microchannel without disruption of concentrated particle streams by taking advantage of particle focusing in inertial spiral microfluidics, which is achieved by balancing inertial lift forces and Dean drag forces. To enable the calculation of channel geometries in the device for specific concentration factors, an equivalent circuit model was developed and experimentally validated. Large particle concentration factors were achieved by maintaining either average fluid velocity or Dean number throughout the entire length of the channel during the incremental removal of sample fluid. Also provided is the ability to simultaneously separate more than one particle from the same sample.