Disclosed is a manufacturing method for a fine powder exhibiting improved solubility, little impurity contamination, and a high recovery rate. Material to be ground and a grinding medium are suspended and stirred in a liquefied inert gas dispersion medium such as dried ice, and the material to be ground is made into a sub-micron or nano-sized fine powder. A uniform fine powder can be obtained when the material to be ground is a mixture having two or more components. Impurity contamination can be reduced by using granular dry ice as the grinding medium.