A method for manufacturing a steel sheet having a yield strength YS of more than 1000 MPa, a tensile strength TS of more than 1150 MPa and a total elongation E of more than 8%, includes the steps of—;preparing a steel sheet through rolling from a steel containing in percent by weight 0.19% to 0.22% C, 2% to 2.6% Mn, 1.45% to 1.55% Si, 0.15% to 0.4% Cr, less than 0.020% P, less than 0.05% S, less than 0.08% N, 0.015% to 0.070% Al, the reminder being Fe and unavoidable impurities; and soaking the sheet at an annealing temperature TA between 860° C. and 890° C. for a time between 100 s and 210 s, cooling the sheet to a quenching temperature QT between 220° C. and 330° C., from a temperature TC not less than 500° C. at a cooling speed not less than 15° C./s, heating the steel sheet during a time between 115 s and 240 s up to a first overaging temperature TOA1 higher than 380° C., then heating the sheet during a time between 300 s and 610 s up to a second overaging temperature TOA2 between 420° and 450° C., cooling the steel sheet to a temperature less than 100° C. at a cooling speed less than 5° C./s. The structure of the steel contains more than 80% of tempered martensite, more than 5% of retained austenite, less than 5% of ferrite, less than 5% of bainite and less than 6% of fresh martensite.