Prior-art receivers for double-sideband coded orthogonal frequency-division modulation (COFDM) signal, such as receivers for digital television (DTV) broadcasting, have folded the frequency spectrum in half by synchrodyne to baseband before discrete Fourier transform (DFT) and de-mapping quadrature amplitude-modulation (QAM) of COFDM signal subcarriers, thus to improve signal-to-noise ratio by 6 dB. Single-sideband or independent-sideband COFDM receivers that perform DFT and demapping of QAM of COFDM signal subcarriers in an unfolded frequency spectrum can improve signal-to-noise ratio by 8.5 dB by maximal-ratio combining bits of demapping results. Such improvement is achieved even when such a receiver is arranged for receiving a DSB-COFDM signal, in which double-sideband signal the frequency spectra of the lower and upper sidebands mirror each other. Reception range is increased by about a third over that of receivers which fold the frequency in half during synchrodyne to baseband. Such increase in reception