您的位置: 首页 > 农业专利 > 详情页

基于ResNet-GCN网络模型的脑胶质瘤恶性程度分级方法
专利权人:
华南理工大学
发明人:
刘富春,李明远
申请号:
CN202211353549.X
公开号:
CN115760900A
申请日:
2022.11.01
申请国别(地区):
CN
年份:
2023
代理人:
摘要:
本发明公开了一种基于ResNet‑GCN网络模型的脑胶质瘤恶性程度分级方法,包括以下步骤:S1、数据集构建与数据预处理,获取MRI图像构建数据集,并将数据转换至所需格式,对数据进行预处理;S2、构建ResNet‑GCN网络模型,以ResNet模型为基础,修改特征提取器的输出,得到不同层次的特征向量集合,利用特征向量集合构建出邻接矩阵后,将邻接矩阵作为输入连接到GCN模型;S3、设置模型训练参数,指定使用的损失函数形式,训练ResNet‑GCN网络模型;S4、对ResNet‑GCN网络模型进行评估,最终将训练好的模型用于实际脑胶质瘤恶性程度分级。本发明提出的ResNet‑GCN模型能够综合分析不同层次的特征向量,具有更好的分类性能,实现更好的辅助诊断。
来源网站:
中国工程科技知识中心
来源网址:
http://www.ckcest.cn/home/

意 见 箱

匿名:登录

个人用户登录

找回密码

第三方账号登录

忘记密码

个人用户注册

必须为有效邮箱
6~16位数字与字母组合
6~16位数字与字母组合
请输入正确的手机号码

信息补充