共检索到508条,权限内显示50条;
[前沿资讯 ] 杂交水稻技术再有重大突破 进入全文
香港浸会大学
一项由香港浸会大学(浸大)理学院生物系讲座教授张建华领导的研究,通过开创雌性不育技术,为杂交水稻的制种过程带来突破。相比生产杂交水稻种子常用的雄性不育技术「三系法」,该崭新的技术不会产生「恢复系」自花授粉所孕育的水稻种子,从而提升杂交水稻种植的效率。新技术可实现以机器全面自动化收割杂交种子,令制种成本大幅降低。研究结果已于近期刊登在尖端国际科学期刊《Cell Research》。经过近十年不断研究,浸大理学院生物系讲座教授张建华带领的研究团队,在水稻田种植过程中,从一个优质的水稻品种发现「自发性温敏雌性不育1」(TFS1)基因突变。在正常或高温下(即高于25°C),该基因突变会令水稻呈现雌性不育,而在低温(即23°C)下则恢复部份育性。这个基因突变没有令水稻的生长出现异常。团队观察到出现TFS1基因突变的水稻,可产生雄性育性正常的健康花粉。育性正常的水稻接受了带有TFS1基因突变的水稻花粉后,可结出正常的种子。研究进一步显示,在正常或高温下,当花粉在带有TFS1基因突变的水稻的柱头上萌发后,它们长出的花粉管未能进入胚囊,故未能产生胚胎并结出种子。但在低温下,育性及产生胚胎的能力可部分获得恢复。团队运用基因克隆(gene cloning)及分子技术进行一系列基因分析,发现雌性不育基因突变,是由一个出现在基因区域Argonaute7(AGO7)的点突变所产生。AGO7属于一种Argonaute(AGO)蛋白复合体,负责制造小分子干扰核糖核酸tasiR-ARFs。tasiR-ARFs的下游调控能控制花粉管进入胚囊,但在正常或高温下,此调控机制在带有TFS1基因突变的水稻中失效,因而无法完成双受精过程。为评价TFS1作为杂交水稻制种基因工具的潜质,团队在香港及湖南省进行种植实验。团队通过基因渗入及基因编辑的方法,把TFS1突变基因导入三个水稻品种,培植出温敏雌性不育种质的水稻,用作提供花粉的「恢复系」。另外三种雄性不育的水稻品种则用作「雄性不育系」。团队把「恢复系」按传统杂交制种的做法种植于「雄性不育系」旁,或把它们随机混合在农田上种植。在香港,两个种植方案均可以在超过三成的「雄性不育系」水稻花穗收成杂交种子,湖南省则有超过四成。这个种子收成比例,与沿用现有「恢复系」的杂交制种收成比例相若,但无须于收割杂交种子前移除「恢复系」。
[前沿资讯 ] 教授团队在水稻耐盐关键基因鉴定及分子机制研究中取得新进展 进入全文
南京农业大学
近日,南京农业大学生命科学学院章文华教授团队在PNAS在线发表了题为“Transcriptional repressor RST1 controls salt tolerance and grain yield in rice by regulating gene expression of asparagine synthetase”的研究论文。该研究鉴定到一个新的水稻耐盐关键基因RST1,并揭示了其通过抑制天冬酰胺合成酶基因表达来调控水稻盐胁迫响应以及产量形成的分子机制。土壤盐渍化是限制作物生产的主要非生物胁迫之一。土壤中过多的盐分会破坏植物细胞中正常的营养代谢,导致生长受抑、产量下降。然而,植物是如何改变其营养代谢过程来适应盐胁迫的,目前尚不清楚。为了挖掘水稻耐盐关键基因,该团队对EMS诱变的水稻突变体库进行筛选,鉴定到一份耐盐性和产量均显著提高的突变体,并将之命名为rice salt tolerant 1(rst1)(Deng et al., 2015)。在本研究中,通过图位克隆方法从rst1突变体中分离到一个新的耐盐基因RST1,其编码生长素响应因子OsARF18。RST1功能缺失和过量表达株系分别表现出耐盐和盐敏感表型,表明该基因是水稻耐盐性的负调控因子。研究发现,RST1定位于细胞核中,具有转录抑制活性,能够直接与天冬酰胺合成酶基因OsAS1基因的启动子结合并抑制其表达。来源于rst1突变体变异形式的RST1由于编码区发生一个单碱基替换导致其翻译提前终止并丧失了转录抑制活性。RST1功能缺失导致OsAS1基因表达上调,通过促进天冬酰胺的合成提高氮的利用率,同时减少NH4+的过量积累,从而提高植株的耐盐性。此项工作的另外一个重要发现是,自然变异分析提示RST1基因可以分成3种单倍型,其中优势单倍型RST1Hap III主要存在于粳稻品种中,通过降低其蛋白的转录抑制活性来提高水稻的耐盐性以及粒重。连续两年的大田实验结果表明,RST1功能缺失能够显著提高水稻在正常生长条件下的单株产量并减少盐胁迫条件下的产量损失。该研究揭示了RST1-OsAS1分子模块通过调控氮素利用效率来提高耐盐性和产量的分子机制,不仅拓宽了人们对植物耐盐分子机制的认识,同时为水稻耐盐性和产量的遗传改良提供了重要的遗传材料和基因资源。
[前沿资讯 ] 水稻小麦穗发芽研究获进展 进入全文
中国科学院
种子休眠性是指种子在适合它生长的条件(温度、水分和氧气等)下仍不能萌发的现象,是多数高等植物所共有的适应性性状。作物驯化过程更多考虑高产、优质、抗病虫及耐受逆境性状,同时保证在生产中种子具有一致的萌发特性,而忽视了对种子适度休眠的保留,导致较多作物如水稻、小麦在生产上大面积遭遇严重的穗发芽问题,即种子成熟期遇潮湿气候在收获前出现穗上籽粒萌发的现象,造成了在收获的最后时刻面临近乎绝收的经济损失。近年来,随着全球气候变暖,水稻、小麦等作物在成熟后期频繁遭遇连阴天气,穗发芽灾害发生较为普遍。此外,在作物制种后期同样会遭遇频繁的连阴雨天气,穗发芽对制种产业造成损失,且其影响往往延伸到下季播种。因此,找到水稻、小麦等控制种子休眠的关键基因,阐明种子休眠调控的分子生理机制,挖掘其优良等位变异,对解决水稻等作物穗发芽灾害至关重要。然而,种子休眠性是颇为复杂的农艺性状,受到大量数量性状位点的调控,并受到多种环境因素的显著影响。种子休眠性关键调控基因的克隆较为困难,生产上缺乏实用的主要基因资源。针对这一现状,中国科学院遗传与发育生物学研究所储成才团队通过构建可稳定检测到休眠控制位点区域的高密度染色体单片段代换系群体,在强休眠水稻品种Kasalath中克隆到一个控制水稻种子休眠的关键基因SD6,并证实了SD6负调控水稻种子休眠性。通过筛选SD6互作蛋白,研究发现了另一水稻转录因子ICE2正调控水稻种子休眠性。通过分子生物学、遗传学及生物化学等实验,科研团队揭示了SD6和ICE2均直接靶向脱落酸(ABA)8′-羟化酶基因ABA8ox3启动子上,两者分别识别启动子上的G-box基序或E-box基序从而实现对同一靶基因的反向调控。SD6和ICE2通过拮抗调控另一个转录因子OsbHLH048间接地调控了ABA的关键合成调控基因即9-顺式-环氧类胡萝卜素双加氧酶基因NCED2。这揭示了一个新的激素平衡调控范式,即拮抗的转录因子对可通过直接地调控ABA的代谢,并间接地调控ABA的合成,从而实现ABA含量的及时高效调控,以切换种子的休眠与萌发。种子休眠性既受遗传调控,又可通过种子所处环境来调节。温度是影响种子休眠和萌发主要的环境因子。温暖环境通常能加速解除种子休眠,促进种子萌发,而低温则使种子维持休眠状态。这种感知外界环境的能力可以使种子度过不利环境条件,如冬季低温等。储成才团队发现SD6-ICE2分子模块具备感知周边环境温度调控种子休眠性的特征:在常温条件下,SD6基因维持高水平表达,发挥功能,而ICE2基因表达则受到明显抑制,促进种子萌发;在低温条件下,SD6基因表达则受到明显抑制,ICE2基因表达量上调,使种子维持在休眠状态。这表明SD6-ICE2通过感知外界环境温度变化此消彼长,动态控制种子中的ABA含量,从而调控种子休眠强度以适应自然气候更替。这解释了种子休眠性是如何作为一种适应性策略来避免不适宜的条件。研究显示,含有SD6强休眠等位的近等基因系在大田表现出优异的穗发芽抗性,暗示该自然变异位点可用于优质水稻主栽品种的休眠性常规育种改良。同时,通过基因编辑技术对多个水稻易穗发芽主栽品种的SD6基因进行改良,该研究证实在不同水稻品种背景下改良的材料在收获期遭遇连绵阴雨天气的情况下,其穗发芽情况显著改善。高彩霞团队对小麦品种科农199的TaSD6基因进行改良,也可以大幅提高小麦穗发芽抗性,表明SD6基因在水稻和小麦中控制种子休眠性的功能是保守的,即SD6在水稻和小麦穗发芽抗性育种改良中均具有重要应用价值
[前沿资讯 ] 首次完成水稻从种子到种子全生命周期空间培养实验 进入全文
中国科学院
在我国空间站生命科学项目中,中国科学院分子植物科学卓越创新中心郑慧琼研究团队承担了“微重力条件下高等植物开花调控的分子机理”,在国际上首次开展了水稻从种子到种子全生命周期培养实验。同时,开花是结种子的前提,研究团队利用模式植物拟南芥,也系统地研究了空间微重力对植物开花的影响。从2022年7月29日注入营养液启动实验,至11月25日结束实验,本项目共在轨开展实验120天,完成了拟南芥和水稻种子萌发、幼苗生长、开花结籽全生命周期的培养实验。期间航天员在轨进行了三次样品采集,包括9月21日孕穗期水稻样品采集;10月12日拟南芥开花期样品采集和11月25日水稻和拟南芥种子成熟期样品采集。采集后,开花或孕穗期样品保存于-80℃低温存储柜中,种子成熟期样品保存于4℃低温存储柜。12月4日,样品随神舟十四号返回地面。按计划在北京交接样品后,转运至上海实验室中做进一步检测分析。本次空间项目主要完成的实验内容包括:(1)在轨完成了水稻从种子萌发、幼苗生长、抽穗和结籽全生命周期的培养实验并通过获取图像进行分析;(2)完成了剪株后空间再生稻成功培育并结出了成熟的种子(二茬);(3)在轨完成拟南芥种子萌发、幼苗生长和不同三个生物钟调控的开花关键基因对空间微重力响应的图像观察分析并在轨采集了样品。通过对空间获取的图像分析,并与地面对照比较,研究发现空间微重力对水稻的多种农艺性状,包括株高、分蘖数、生长速率、水分调控、对光反应、开花时间、种子发育过程以及结实率等多方面的影响。实验初步发现:(1)水稻的株型在空间变得更为松散,主要是茎叶夹角变大;矮杆水稻变得更矮,高秆水稻的高度没有受到明显的影响。此外,生物钟控制的水稻叶片生长螺旋上升运动在空间更为凸显。(2)水稻空间开花时间比地面略有提前,但是,灌浆时间延长了10多天,大部分颖壳不能关闭。开花时间和颖壳闭合均是水稻的重要农艺性状,二者在保障植物充分的生殖生长是获得高产优质种子方面都有重要作用,此过程受到基因表达的调控,后续将利用返回样品进一步分析。(3)在空间进行再生稻实验并获得再生稻的种子。从剪株20天后就可以再生出了2个稻穗,说明空间狭小的封闭环境中再生稻是可行的,为空间作物的高效生产提供了新的思路和实验证据。该技术可以大大增加单位体积中的水稻产量,也是国际上首次在空间尝试的再生稻技术。(4)首次对空间生物钟调控光周期开花的关键基因进行研究。利用基因突变和转基因的方法,构建了三种不同开花时间的拟南芥,分别是:提前开花,延迟开花和正常开花(野生型),通过对空间拟南芥生长发育的图普观察与分析,发现开花关键基因对微重力的响应与地面有明显的差异,其中在地面提早开花的拟南芥在微重力条件下开花时间也大大的延长。此外,生物钟基因突变后,空间拟南芥的下胚轴过度伸长,说明生物钟基因表达对于维持拟南芥在空间生长的正常形态和适应空间环境非常重要,为今后利用改造开花基因来促进植物适应空间微重力环境提供了新方向。后续研究团队将进一步利用返回材料对拟南芥适应空间环境的分子基础进行深入解析。
[前沿资讯 ] 研究揭示植物营养生长的表观遗传协同调控新机制 进入全文
中国农业科学院
近日,中国农业科学院生物技术研究所玉米功能基因组团队解析了植物高光效和高产等多重发育程序的表观遗传协同调控分子机理,首次揭示了真核生物中不同的表观遗传修饰间的互作关系和功能,为研究植物生长发育、环境适应性及高产稳产作物培育提供了新的方向。相关研究成果发表在《前沿科学(Advanced Science)》上。植物的营养生长受多重发育程序的调控,并直接影响种子发育和作物产量。但植物响应环境、平衡复杂的发育程序以维持营养生长阶段能量积累和快速生长的分子机制目前尚不清楚。该研究发现植物特异蛋白EMF1能调控RNA甲基化和组蛋白修饰在全基因组水平上的协作关系,在植物营养生长阶段可同时作为抑制子和激活子调控特定的开花、种子发育以及叶绿体发育和光合作用等关键下游靶基因转录。两个不同的作用方式精确调控了植物正常的营养生长,促进了植物的光合作用,从而为植物生殖生长和种子的形成积累了能量。该研究不仅为植物表观遗传和基因组学相关研究提供了重要数据资源,而且深入揭示了RNA甲基化在染色质表观修饰可塑性的贡献,并为复杂的表观调控网络在作物高光效、高产等基因转录调控中的作用提供了新认知。
[前沿资讯 ] 教授团队揭示水稻吸收重金属铅的分子机制 进入全文
南京农业大学
近日,南京农业大学资环学院赵方杰教授团队在《Environmental Science & Technology》在线发表了题为“OsNRAMP5 is a major transporter for lead uptake in rice”的研究论文,揭示了水稻根系膜转运蛋白OsNRAMP5参与对有毒重金属铅(Pb)吸收的新功能。铅是毒性最强的重金属元素之一,且在环境中分布广泛,被联合国世界卫生组织列为影响人类公共健康的十大污染物之一。过量Pb暴露会对人体健康造成一系列不良影响。此外,Pb是一种神经毒素,过量暴露可导致儿童认知发育迟缓,智力下降。食物是人体Pb暴露的主要来源之一,其中,大米对膳食Pb摄入贡献较大。种植在未受污染土壤的水稻籽粒Pb含量通常较低,但人为活动(如采矿、金属冶炼和大气沉降等)造成的土壤污染会增加水稻籽粒中Pb的积累。水稻根系如何吸收Pb的分子机制迄今尚不清楚。NRAMP(自然抗性相关巨噬细胞蛋白)家族是一类具有转运过度金属离子活性的膜蛋白。前期研究表明OsNRAMP5是水稻吸收锰(Mn)和镉(Cd)的主要转运蛋白,但OsNRAMP5是否也转运Pb尚不清楚。赵方杰团队首先采用酵母异源表达OsNRAMP5基因,发现表达该基因的酵母细胞Pb的吸收增加,对Pb的敏感性增强。进一步采用CRISPR/Cas9编辑敲除水稻OsNRAMP5基因,发现突变体根系对Pb的吸收和地上部Pb的积累大幅度下降。吸收动力学实验结果表明,OsNRAMP5基因敲除突变体根系Pb的最大吸收速率(Vmax)比野生型下降了70%(图1)。在水培条件下,提高营养液Mn浓度显著抑制水稻根系对Pb的吸收,说明Mn对Pb的吸收有竞争效应。种植在Pb污染的水稻土中,OsNRAMP5基因敲除突变体籽粒和秸秆Pb含量比野生型分别降低了50%和70%。研究结果表明,OsNRAMP5除了对Mn和Cd吸收发挥重要作用外,还是水稻吸收Pb的主要转运蛋白。该研究首次揭示了水稻根系吸收Pb的分子机制,为阻控作物Pb的吸收、提升农产品安全提供了理论依据。