special

您的位置: 首页 > 院士专题 > 专题列表

共检索到2246条,权限内显示50条;

[学术文献 ] Interactive Effect of Tocopherol, Salicylic Acid and Ascorbic Acid on Agronomic Characters of Two Genotypes of Brassica napus L. Under Induced Drought and Salinity Stresses 进入全文

Gesunde Pflanzen

Several agricultural systems are vulnerable to the harmful effects of climate change in today’s increasingly vulnerable world. Drought and salinity are two major factors in climate change that can severely slow down the development of many crops. This study determined the influence of induced drought and salinity on growth of two varieties of Brassica napus L. (Shiralee and Vanguard), after priming with salicylic acid, ascorbic acid and tocopherol. Seed priming significantly promoted seed germination and reduced the normal germination time of seeds under both induced stressors. Significant increase in shoot length, shoot and root fresh weight, dry shoot weight of seedling was found for all the primed seeds as compared to non-primed seeds of both cultivars. Results showed that absolute growth rate of both varieties were remarkably influenced by the imposed drought as compared to salinity treatments. Relative growth rate, net assimilation rate, seed germination index, Timson germination index were negatively affected by 150 mM NaCl concentration for the vanguard cultivar. According to results of scanning electron microscope (SEM), osmoprimed seeds increased stomatal physiology and epidermal vigor of both cultivars significantly by boosting the water potential. Response of both B. napus cultivars was found different under induced drought and salinity treatments. It has been concluded from the results that, seed priming with growth regulators such as tocopherol, ascorbic acid and salicylic acid is considered as useful technique for enhancing the germination and growth responses of B. napus under drought and salinity stresses.

[学术文献 ] Copy Number Variation among Resistance Genes Analogues in Brassica napus 进入全文

Genes

Copy number variations (CNVs) are defined as deletions, duplications and insertions among individuals of a species. There is growing evidence that CNV is a major factor underlining various autoimmune disorders and diseases in humans; however, in plants, especially oilseed crops, the role of CNVs in disease resistance is not well studied. Here, we investigate the genome-wide diversity and genetic properties of CNVs in resistance gene analogues (RGAs) across eight Brassica napus lines. A total of 1137 CNV events (704 deletions and 433 duplications) were detected across 563 RGAs. The results show CNVs are more likely to occur across clustered RGAs compared to singletons. In addition, 112 RGAs were linked to a blackleg resistance QTL, of which 25 were affected by CNV. Overall, we show that the presence and abundance of CNVs differ between lines, suggesting that in B. napus, the distribution of CNVs depends on genetic background. Our findings advance the understanding of CNV as an important type of genomic structural variation in B. napus and provide a resource to support breeding of advanced canola lines.

[科技图书 ] Genomic Designing for Abiotic Stress Resistant Vegetable Crops 进入全文

Springer

This book presents deliberations on molecular and genomic mechanisms underlying the interactions of crop plants to the abiotic stresses caused by heat, cold, drought, flooding, submergence, salinity, acidity, etc., important to develop resistant crop varieties. Knowledge on the advanced genetic and genomic crop improvement strategies including molecular breeding, transgenics, genomic-assisted breeding, and the recently emerging genome editing for developing resistant varieties in vegetable crops is imperative for addressing FHNEE (food, health, nutrition, energy, and environment) security. Whole genome sequencing of these crops followed by genotyping-by-sequencing has provided precise information regarding the genes conferring resistance useful for gene discovery, allele mining, and shuttle breeding which in turn opened up the scope for 'designing' crop genomes with resistance to abiotic stresses.

[学术文献 ] Growth, physiological, and temperature characteristics in chinese cabbage pakchoi as affected by Cd- stressed conditions and identifying its main controlling factors using PLS model 进入全文

BMC Plant Biology

Although hormesis induced by heavy metals is a well-known phenomenon, the involved biological mechanisms are not fully understood. Cadmium (Cd) is a prevalent heavy metal in the environment. Exposure of Cd, via intake or consumption of Cd-contaminated air or food, poses a huge threat to human health. Chinese cabbage pakchoi (Brassica chinensis L.) is widely planted and consumed as a popular vegetable in China. Therefore, study-ing the response of Chinese cabbage pakchoi to Cd- stressed conditions is critical to assess whether cabbage can accumulate Cd and serve as an important Cd exposure pathway to human beings. In this study, we investigated the influence of Cd stress on growth, photosynthetic physiology, antioxidant enzyme activities, nutritional quality, ana-tomical structure, and canopy temperature in Chinese cabbage pakchoi. A partial least squares (PLS) model was used to quantify the relationship between physical and chemical indicators with Cd accumulation in cabbage, and identify the main controlling factors. Results showed that Cd stress significantly inhibited cabbage’s growth and development. When Cd stress was increased, the phenotypic indicators were significantly reduced. Meanwhile, Cd stress significantly enhanced the oxidative stress response of cabbage, such as the activities of catalase (CAT), superoxide dismutase (SOD), peroxidase (POD), ascorbate peroxidase (APX), and the content of malondialdehyde (MDA) in leaves. Such a change tended to increase fenestrated tissues’ thickness but decrease the thickness of leaf and spongy tissues. Moreover, Cd stress significantly increased soluble sugar, protein, and vitamin C contents in leaves as well as the temperature in the plant canopy. The PLS model analysis showed that the studied phenotypic and physicochemical indicators had good relationships with Cd accumulation in roots, shoots, and the whole plant of cabbage, with high coefficient of determi-nation (R2) values of 0.891, 0.811, and 0.845, and low relative percent deviation (RPD) values of 3.052, 2.317, and 2.557, respectively. Furthermore, through analyzing each parameter’s variable importance for projection (VIP) value, the SOD activity was identified as a key factor for indicating Cd accumulation in cabbage. Meanwhile, the effects of CAT on Cd accumulation in cabbage and the canopy mean temperature were also high. Cd stress has significant inhibitory effects and can cause damage cabbage’s growth and development, and the SOD activity may serve as a key factor to indicate Cd uptake and accumulation in cabbage.

[学术文献 ] Comprehensive transcriptome analysis reveals heat-responsive genes in flowering Chinese cabbage (Brassica campestris L. ssp. chinensis) using RNA sequencing 进入全文

Front Plant Sci

Flowering Chinese cabbage (Brassica campestris L. ssp. chinensis var. utilis Tsen et Lee, 2n=20, AA) is a vegetable species in southern parts of China that faces high temperatures in the summer and winter seasons. While heat stress adversely impacts plant productivity and survival, the underlying molecular and biochemical causes are poorly understood. This study investigated the gene expression profiles of heat-sensitive (HS) ‘3T-6’ and heat-tolerant (HT) ‘Youlu-501’ varieties of flowering Chinese cabbage in response to heat stress using RNA sequencing. Among the 37,958 genes expressed in leaves, 20,680 were differentially expressed genes (DEGs) at 1, 6, and 12 h, with 1,078 simultaneously expressed at all time points in both varieties. Hierarchical clustering analysis identified three clusters comprising 1,958, 556, and 591 down-regulated, up-regulated, and up-and/or down-regulated DEGs (3205 DEGs; 8.44%), which were significantly enriched in MAPK signaling, plant-pathogen interactions, plant hormone signal transduction, and brassinosteroid biosynthesis pathways and involved in stimulus, stress, growth, reproductive, and defense responses. Transcription factors, including MYB (12), NAC (13), WRKY (11), ERF (31), HSF (17), bHLH (16), and regulatory proteins such as PAL, CYP450, and photosystem II, played an essential role as effectors of homeostasis, kinases/phosphatases, and photosynthesis. Among 3205 DEGs, many previously reported genes underlying heat stress were also identified, e.g., BraWRKY25, BraHSP70, BraHSPB27, BraCYP71A23, BraPYL9, and BraA05g032350.3C. The genome-wide comparison of HS and HT provides a solid foundation for understanding the molecular mechanisms of heat tolerance in flowering Chinese cabbage.

[学术文献 ] Comparison of an Artificial Neural Network and a Response Surface Model during the Extraction of Selenium-Containing Protein from Selenium-Enriched Brassica napus L. 进入全文

Foods

n this study, the extraction conditions for selenium-enriched rape protein (SEP) were optimized by applying a response surface methodology (RSM) and artificial neural network (ANN) model, and then, the optimal conditions were obtained using a genetic algorithm (GA). Then, the antioxidant power of the SEP was examined by using the DPPH, ABTS, and CCK-8 (Cell Counting Kit-8), and its anticancer activities were explored by conducting a cell migration test. The results showed that compared with the RSM model, the ANN model was more accurate with a higher determination coefficient and fewer errors when it was applied to optimize the extraction method. The data obtained for SEP using a GA were as follows: the extraction temperature was 59.4 ℃, the extraction time was 3.0 h, the alkaline concentration was 0.24 mol/L, the liquid-to-material ratio was 65.2 mL/g, and the predicted content of protein was 58.04 mg/g. The protein was extracted under the conditions obtained by the GA; the real content of protein was 57.69 mg/g, and the protein yield was 61.71%. Finally, as the concentration of the selenium-containing protein increased, it showed increased ability in scavenging free radicals and was influential in inhibiting the proliferation and migration of HepG2 cells.

热门相关

意 见 箱

匿名:登录

个人用户登录

找回密码

第三方账号登录

忘记密码

个人用户注册

必须为有效邮箱
6~16位数字与字母组合
6~16位数字与字母组合
请输入正确的手机号码

信息补充