special

您的位置: 首页 > 院士专题 > 专题列表

共检索到126条,权限内显示50条;

[学术文献 ] Low blue light enhances phototropism by releasing cryptochrome 1-mediated inhibition of PIF4 expression 进入全文

Plant Physiology

Shade-avoiding plants, including Arabidopsis (Arabidopsis thaliana), display a number of growth responses, such as elongation of stem-like structures and repositioning of leaves, elicited by shade cues, including a reduction in the blue and red portions of the solar spectrum and a low red to far-red ratio. Shade also promotes phototropism of de-etiolated seedlings through repression of phytochrome B (phyB), presumably to enhance capture of unfiltered sunlight. Here we show that both low blue light and a low red to far-red light ratio are required to rapidly enhance phototropism in Arabidopsis seedlings. However, prolonged low blue light treatments are sufficient to promote phototropism through reduced cryptochrome 1 (cry1) activation. The enhanced phototropic response of cry1 mutants in the lab and in response to natural canopies depends on PHYTOCHROME INTERACTING FACTORs (PIFs). In favorable light conditions, cry1 limits the expression of PIF4, while in low blue light PIF4 expression increases, which contributes to phototropic enhancement. The analysis of quantitative DII-Venus, an auxin signaling reporter, indicates that low blue light leads to enhanced auxin signaling in the hypocotyl and, upon phototropic stimulation, a steeper auxin signaling gradient across the hypocotyl. We conclude that phototropic enhancement by canopy shade results from the combined activities of phytochrome B and cry1 that converge on PIF regulation.

[学术文献 ] Biological and molecular characterization of tomato brown rugose fruit virus and development of quadruplex RT-PCR detection 进入全文

Journal of Integrative Agriculture

Tomato brown rugose fruit virus (ToBRFV) is a novel tobamovirus firstly reported in 2015 and poses a severe threat to the tomato industry.  So far, it has spread to ten countries in America, Asia, and Europe.  In 2019, we identified the occurrence of ToBRFV in Shandong Province (ToBRFV-SD), China.  Here, we showed ToBRFV-SD induce mild to severe mosaic and blistering on leaves, necrosis on sepals and pedicles, deformation, yellow spots, and brown rugose necrotic lesions on fruits.  ToBRFV-SD induced distinct symptoms on plants of tomato, Capsicum annumm, and Nicotiana benthamiana, and caused latent infection on plants of Solanum tuberosum, Solanum melongena, and N. tabacum cv. Zhongyan 102.  All the 50 tomato cultivars tested were highly sensitive to ToBRFV-SD.  The complete genomic sequence of ToBRFV-SD shared the highest nucleotide and amino acid identities with isolate IL from Israel.  In the phylogenetic tree constructed with the complete genomic sequence, all the ToBRFV isolates were clustered together and formed a sister branch with that of tobacco mosaic virus (TMV).  Furthermore, we developed a quadruplex RT-PCR system that could differentiate ToBRFV from TMV, tomato mosaic virus, and tomato spotted wilt virus, all of which are economically important viruses infecting tomato.  These results increase our understanding of the biological and molecular characteristics of ToBRFV and provide an efficient detection method for mixed infections, which will be helpful in the management of ToBRFV.  

[学术文献 ] 日光温室不同时段补光对番茄果实品质及挥发性物质影响 进入全文

农业工程学报

为探明日光温室中提高番茄产量和品质的最佳补光时段,以"粉太郎"番茄为试材,从植株定植后第25天到第一穗果完全成熟时进行补光,利用LED灯设置3种补光时段:揭帘前补光5 h(T1)、盖帘后补光5 h(T2)、揭帘前盖帘后分别补光2.5h(T3),以不补光作为对照(CK),研究其对番茄产量、果实品质以及挥发性物质成分和含量的影响。结果表明:补光处理可提高番茄平均单株产量、果实可溶性糖含量、可溶性固形物含量、糖酸比、挥发性物质总数量和总质量分数,但会降低有机酸含量,T1处理效果最显著(P<0.05)。4个处理共检测出83种挥发性物质,包括12种酮类、22种醛类、22种醇类、6种酯类、6种烃类和15种其他类物质。各处理挥发性物质总数量和总质量分数由大到小为:T1(68种,3 107.98μg/kg)、T3(65种,2 610.74μg/kg)、T2(63种,2 438.96μg/kg)、CK(59种,2 086.03μg/kg)。每个处理醇类含量最多,烃类含量最低,并且含量最高的物质均是顺-3-己烯-1-醇。3种补光处理均可提高酮类、醛类、醇类和其他类物质含量,但显著降低烃类物质含量(P<0.05),酯类物质含量只在T1处理时有所提高。所有被检测出的挥发性物质包含11种番茄特征香气成分,主要分为花香、果香与青香3种类型,其中青香味物质含量最多。综上,对番茄进行补光尤其是揭帘前补光5 h可有效提高番茄产量、果实品质和风味,是当地日光温室越冬茬番茄栽培的较优补光时段。研究结果可为设施番茄种植的光环境调控技术提供科学依据。

[学术文献 ] Systemic signaling during abiotic stress combination in plants 进入全文

PNAS

Extreme environmental conditions, such as heat, salinity, and decreased water availability, can have a devastating impact on plant growth and productivity, potentially resulting in the collapse of entire ecosystems. Stress-induced systemic signaling and systemic acquired acclimation play canonical roles in plant survival during episodes of environmental stress. Recent studies revealed that in response to a single abiotic stress, applied to a single leaf, plants mount a comprehensive stress-specific systemic response that includes the accumulation of many different stress-specific transcripts and metabolites, as well as a coordinated stress-specific whole-plant stomatal response. However, in nature plants are routinely subjected to a combination of two or more different abiotic stresses, each potentially triggering its own stress-specific systemic response, highlighting a new fundamental question in plant biology: are plants capable of integrating two different systemic signals simultaneously generated during conditions of stress combination? Here we show that plants can integrate two different systemic signals simultaneously generated during stress combination, and that the manner in which plants sense the different stresses that trigger these signals (i.e., at the same or different parts of the plant) makes a significant difference in how fast and efficient they induce systemic reactive oxygen species (ROS) signals; transcriptomic, hormonal, and stomatal responses; as well as plant acclimation. Our results shed light on how plants acclimate to their environment and survive a combination of different abiotic stresses. In addition, they highlight a key role for systemic ROS signals in coordinating the response of different leaves to stress.

[学术文献 ] GREEN STRIPE , encoding methylated TOMATO AGAMOUS‐LIKE 1, regulates chloroplast development and chlorophyll synthesis in fruit 进入全文

New Phytologist

Fruit development involves chloroplast development, carotenoid accumulation and fruit coloration. Although genetic regulation of fruit development has been extensively investigated, epigenetic regulation on fruit coloration remains largely unexplored. Here, we report a naturally occurring epigenetic regulation of TAGL1 , and its impact on chloroplast development and fruit coloration. We used a genome‐wide association study in combination with map‐based cloning to identify GREEN STRIPE (GS ) locus, a methylated isoform of TAGL1 regulating diversified chloroplast development and carotenoid accumulation. Nonuniform pigmentation of fruit produced by GS was highly associated with methylation of TAGL1 promoter, which is linked to a SNP at SL2.50ch07_63842838. High levels of methylation of TAGL1 promoter down‐regulated its expression leading to green stripes. In contrast, low levels of methylation led to light green stripes in gs . RNA‐seq and ChIP collectively showed expression of genes involved with chlorophyll synthesis, chloroplast development were significantly up‐regulated in green stripes relative to light green stripes. Quantitative PCR and dual luciferase assay confirmed TAGL1 down‐regulates expression of SlMPEC , SlPsbQ , SlCAB and up‐regulates expression of PSY1 , which are associated with chloroplast development and carotenoid accumulation. Altogether, GS locus demonstrates naturally occurring methylation of TAGL1 has diverse effects on plastid development in fruit.

[学术文献 ] 光伏驱动基质控温系统对温室番茄根区的降温效果 进入全文

农业工程学报

在温室中经常出现短期或持续的高温工况,通常温室内温度环境调控的方法为整体降温,该方法通常会出现无法达到有效降温或高能耗的问题。为解决上述问题,更好地实现温室的周年生产,该研究提出了一种以光伏作为能量来源,以无机相变材料作为储能工质,结合生态智能的环境控制策略,对番茄根区应对高温工况,实现安全连续生产进行了试验研究。结果表明,在温度较高的夏季晴天需2次各约1 h的降温,阴、雨天各仅需1次约1 h降温,其余时段充分利用系统的保冷作用即可达到维持作物舒适生长环境的要求。在试验工况下,典型晴天(2018年7月18日)、阴天(2018年6月30日)、雨天(2018年7月1日)与对照组温度变化相比,该系统实际将试验组基质的平均温度分别降低了8.65、11.38、11.47 ℃,使番茄根区温度在日间始终低于最高耐受温度(33 ℃),夜间温度控制在发育的最适温度(22 ℃)左右。试验进行到第17天时对照组植株全部死亡,试验组保持良好生长状况。该研究所提出的温室控温方法中,保温种植槽单位面积的制冷功率为510.42 W/m2,基质平均温度降低9.03 ℃,实现了温室能耗的大幅度降低,而且能够长时间维持降温的效果。使用生态智能种植基质控温的方法和系统,可以实现在超低能耗条件下,解决温室番茄的抗高温安全生产问题。

首页上一页...6789下一页尾页

热门相关

意 见 箱

匿名:登录

个人用户登录

找回密码

第三方账号登录

忘记密码

个人用户注册

必须为有效邮箱
6~16位数字与字母组合
6~16位数字与字母组合
请输入正确的手机号码

信息补充