dataService

您的位置: 首页 > 数据服务 > 数据列表页

筛选

共检索到66条 ,权限内显示50条;

Data from: Orchid phylogenomics and multiple drivers of their extraordinary diversification
负责人:
关键词:
BAMM;Pleurothallidinae;BiSSE;speciation
DOI:
doi:10.5061/dryad.n9r58
摘要:
chloroplast genes for 39 species representing all orchid subfamilies and 16 of 17 tribes, time-calibrated against 17 angiosperm fossils. A supermatrix analysis pla
Data from: Unraveling the evolutionary radiation of the families of the Zingiberales using morphological and molecular evidence
负责人:
关键词:
tropical;Zingiberales;morphology;atpB;fossils;phylogeny;rbcL;18S;monocots
DOI:
doi:10.5061/dryad.705
摘要:
aracter sets: 1) morphological features; and sequence data of the 2) chloroplast rbcL gene; 3) chloroplast atpB gene; and 4) nuclear 18S rDNA gene. Outgroups for the analyses inc
Data from: Plastid genome sequences of legumes reveal parallel inversions and multiple losses of rps16 in papilionoids
负责人:
关键词:
Genomic rearrangement;rps16;parallel inversions;Legumes;chloroplast genome;Fabaceae
DOI:
doi:10.5061/dryad.n85m5
摘要:
e species. This case of a homoplasious inversion is also evidence that some inversion events may not be reliable phylogenetic markers.
Data from: Phylogeny of Saxifragales (angiosperms, eudicots): analysis of a rapid, ancient radiation
负责人:
关键词:
phylogenetic resolution;hypothesis testing;Saxifragales;ribosomal DNA;data partition congruence;rapid radiation;chloroplast genes;maximum likelihood estimation
DOI:
doi:10.5061/dryad.684
摘要:
aligned bp from five genes (chloroplast atpB, matK, rbcL, and 18S and 26S nrDNA) to elucidate relationships among major lineages of Saxifragales
Data from: Early photosynthetic eukaryotes inhabited low-salinity habitats
负责人:
关键词:
Cyanothece sp. PCC8801;Gloeomargarita lithophora;Volvox carteri nagariensis UTE2908;Fistulifera sp. JPCC DA0580;Pseudendoclonium akinetum;Pyramimonas parkeae;Precambrian;Anabaena cylindrica PCC7122;Photosynthetic eukaryotes;Cyanophora paradoxa;Prochlorococcus marinus str. MIT9515;Parachlorella kessleri;Synechococcus sp. WH8016;Synechococcus sp. PCC7002;Cyanidium caldarium;Cycas taitungensis;Pedinomonas minor;Chlamydomonas reinhardtii;Psilotum nudum;relaxed molecular clock.;Gloeobacter violaceus PCC7421;Prochloron didemni P2 Fiji;Anthoceros formosae;Mesoproterozoic;Thermosynechococcus elongatus BP1;Welwitschia mirabilis;Prasinoderma colonial;Pseudanabaena biceps PCC7429;Cyanothece sp. PCC7425;Angiopteris evecta;Cyanothece sp. PCC7424;Chlorokybus atmophyticus;Synechococcus sp. JA-3-3Ab;Coccomyxa sp. C169;Floydiella terrestris;Schizomeris leibleinii;Richelia intracellularis HH01;Microcystis aeruginosa NIES843 Micromonas sp. RCC299;Nodularia spumigena CCY9414;Porphyra purpurea;Adiantum capillus veneris;Buus microphylla;Calycanthus floridus;Nymphaea alba;Phaeodactylum tricornutum;Spinacia oleracea;Nodosilinea nodulosa PCC7104;Odontella sinensis;Chloroplast;Physcomitrella patens subsp patens;Great Oxidation Event;Aneura mirabilis;Cyanobacteria;Leptolyngbya sp. PCC7375;Synedra acus;Prochlorococcus marinus str. MIT9211;Cyanobium sp. PCC7001;Leptolyngbya sp. PCC7376;Verdigellas peltata;Bryopsis hypnoides;Gracilaria tenuistipitata;Synechococcus sp. RCC307;Ptilidium pulcherrimum;Prasinococcus sp. CCMP1194;Dunaliella salina;Nostoc azollae 0708;Ranunculus macranthus;Microcoleus vaginatus FGP2;Scenedesmus obliques;Synechococcus sp. PCC7335;Chaetosphaeridium globosum;Oscillatoria sp. PCC6506;Pseudanabaena sp. PCC7367;Raphidiopsis brookii D9;Richelia intracellularis HM01;Trichodesmium erythraeum IMS101;Prochloron didemni P3 Solomon;primary endosymbiotic event;Klebsormidium flaccidum;Acaryochloris marina MBIC11017;Arthrospira sp. PCC8005;Marchantia polymorpha;Staurastrum punctulatum;Coffea arabica;Porphyra yezoensis;Crocosphaera watsonii WH0003;Stigeoclonium helveticum;Pleurocapsa sp. PCC7327;Proterozoic;Gnetum parvifolium;Thalassiosira oceanica CCMP1005;Chara vulgaris;Leptosira terrestris;Cyanidioschyzon merolae strain 10D;Synechococcus sp. CB0101;Paulinella chromatophora;Nostoc punctiforme PCC73102;Pycnococcus provasolii;Illicium oligandrum;Prochlorococcus marinus str. AS9601;Nostoc sp. PCC7120;Fischerella sp. JSC11;Synechocystis sp. PCC6803;Cyanobium gracile PCC6307;Zygnema circumcarinatum;Microcoleus chthonoplastes PCC7420;Neoproterozoic;Pinus contorta;Calothrix sp. PCC6303;Ephedra equisetina;Synechococcus elongatus PCC6301;Amborella trichopoda;Cryptomeria japonica;Monomasti sp. OKE1;Pseudanabaena sp. PCC6802;phylogenomics;Lyngbya sp. PCC8106;Pre-Cambrian;Synechococcus sp. JA-2-3B'a(2-13);Oltmannsiellopsis viridis Oocystis solitaria SAG83 80;Syntrichia ruralis;Nephroselmis olivacea;Synechococcus sp. CC9605;Mesostigma viride;Ostreococcus tauri;Lyngbya majuscula 3L;Oedogonium cardiacum;Prochlorococcus marinus str. MIT9303;Cyanothece sp. CCY0110
DOI:
doi:10.5061/dryad.421p2
摘要:
event occurred. We present phylogenomic and molecular clock analyses, including data from cyanobacterial and chloroplast genomes using a Bayesian approach
Data from: A high frequency of allopolyploid speciation in the gymnospermous genus Ephedra and its possible association with some biolog
负责人:
关键词:
gymnosperm;ecological divergence;polyploid speciation;molecular phylogeny;hybridization;Ephedra
DOI:
doi:10.5061/dryad.kb508
摘要:
tions, and then two single-copy nuclear genes (LFY and DDB2) and two chloroplast DNA fragments were used to unravel the possible origins and maternal donors of the polyploids
Data from: Assignment of homoeologues to parental genomes in allopolyploids for species tree inference, with an example from Fumaria (Papaveraceae)
负责人:
关键词:
coalescent stochasticity;incomplete lineage sorting;NRDP2;genome tree;substitution model error;allopolyploidy;coalescent simulation;homoeologues assignment;Fumaria;Papaveraceae
DOI:
doi:10.5061/dryad.7625d
摘要:
ping simulations we assign nuclear homoeologues and chloroplast sequences (four concatenated loci) to their common hypothetical diploid ancestral genomes. As these
Data from: Recent events dominate interdomain lateral gene transfers between prokaryotes and eukaryotes and, with the exception
负责人:
关键词:
Endosymbiotic gene transfer;eukaryotic tree of life;Eukaryota;Horizontal gene transfer;phylogenomics
DOI:
doi:10.5061/dryad.2bj36
摘要:
While there is compelling evidence for the impact of endosymbiotic gene transfer (EGT; transfer from either mitochondrion or chloroplast

首页上一页...2345下一页尾页

意 见 箱

匿名:登录

个人用户登录

找回密码

第三方账号登录

忘记密码

个人用户注册

必须为有效邮箱
6~16位数字与字母组合
6~16位数字与字母组合
请输入正确的手机号码

信息补充