dataService

您的位置: 首页 > 数据服务 > 数据列表页

筛选

共检索到38条 ,权限内显示50条;

Data from: Planktonic protistan communities in lakes along a large-scale environmental gradient
负责人:
关键词:
oligotrophic lakes;diversity;planktonic;Protists;454 pyrosequencing;longitudinal gradient
DOI:
doi:10.5061/dryad.7s6s8
摘要:
operational taxonomic units (OTUs). The highest OTU richness was found in traditional phytoplankton groups like Dinoflagellata, Chrysophyceae, Chlorophyta and Cryptophyta
Data from: Effects of phylogenetic reconstruction method on the robustness of species delimitation using single-locus data
负责人:
关键词:
species delimitation;Metabarcoding;Drosophila;DNA Barcoding;PTP;speciation;coalescent;GMYC;OTU;Lepidoptera;molecular dating;Cypraeidae;NGS;rotifera
DOI:
doi:10.5061/dryad.8rv46
摘要:
1. Coalescent-based species delimitation methods combine population genetic and phylogenetic theory to provide an objective means for delineating evolutionarily significant units of diversity. The Generalized Mixed Yule Coalescent (GMYC) and the Poisson Tree Process (PTP) are methods that use ultrametric (GMYC or PTP) or non-ultrametric (PTP) gene trees as input, intended for use mostly with single-locus data such as DNA barcodes. 2. Here we assess how robust the GMYC and PTP are to different phylogenetic reconstruction and branch smoothing methods. We reconstruct over 400 ultrametric trees using up to 30 different combinations of phylogenetic and smoothing methods and perform over 2,000 separate species delimitation analyses across 16 empirical datasets. We then assess how variable diversity estimates are, in terms of richness and identity, with respect to species delimitation, phylogenetic and smoothing methods. 3. The PTP method generally generates diversity estimates that are more robust to different phylogenetic methods. The GMYC is more sensitive, but provides consistent estimates for BEAST trees. The lower consistency of GMYC estimates is likely a result of differences among gene trees introduced by the smoothing step. Unresolved nodes (real anomalies or methodological artefacts) affect both GMYC and PTP estimates, but have a greater effect on GMYC estimates. Branch smoothing is a difficult step and perhaps an underappreciated source of bias that may be widespread among studies of diversity and diversification. 4. Nevertheless, careful choice of phylogenetic method does produce equivalent PTP and GMYC diversity estimates. We recommend simultaneous use of the PTP model with any model-based gene tree (e.g. RAxML) and GMYC approaches with BEAST trees for obtaining species hypotheses.
Data from: High throughput sequencing combined with null model tests reveals specific plant-fungi associations linked to seedling establishment and survival
负责人:
关键词:
OTU;DNA metabarcoding;mycorrhiza;Pinus cembra;plant regeneration;elevational gradient;ITS;plant-soil interaction;Fungal pathogens;Transplant experiment
DOI:
doi:10.5061/dryad.qh5js47
摘要:
1. Plant-fungal interactions are important for plant community assembly, but quantifying these relationships remains challenging. High throughput sequencing of fungal communities allows us to identify plant-fungal associations at a high level of resolution, but often fails to provide information on taxonomic and functional assignment of fungi. 2. We transplanted seeds of Pinus cembra across an elevational gradient (1850-2250 m a.s.l.) and identified environmental factors and known fungal associates important for seedling establishment and survival. We then applied null model tests to identify taxonomically unassigned fungi associated with pine recruitment. 3. Early seedling establishment was positively associated with multiple abiotic factors, while seedling survival was positively associated with the absence of a known pathogenic fungus and other biotic factors. Null model tests identified known mycorrhizal partners and a large number of unassigned operational taxonomic units (OTUs) associated with seedling survival, including mycorrhizal, saprotrophic and pathogenic species. 4. Synthesis: We conclude that high throughput metabarcoding paired with null model tests, is a valuable approach for identifying hidden plant-fungal associations within large and complex DNA metabarcoding datasets. Such an approach can be an important tool in illuminating the black box of plant-microbe interactions, and thus understanding ecosystem dynamics.
Data from: Worldwide exploration of the microbiome harbored by the cnidarian model, Exaiptasia pallida (Agassiz in Verrill, 1864) indicates a lack of bacterial association specificity at a lower taxonomic rank
负责人:
关键词:
symbiosis;marine microbiology;Exaiptasia;Sea anemone;Cnidarian;Holocene;coral microbiome;Exaiptasia pallida
DOI:
doi:10.5061/dryad.05st3
摘要:
a high-level core microbiome with local adaptation of the constituents. Indeed, no bacterial OTU was ubiquitously found in all anemones samples. We als
Data from: Microbe biogeography tracks water masses in a dynamic oceanic frontal system
负责人:
关键词:
Hydrothermal vents;Oceanic Fronts;microbial ecology;microbial ecology;Oceanic Fronts
DOI:
doi:10.5061/dryad.qh767
摘要:
g to the spread of Antarctic intermediate water. However, within both the sub-surface layer and the intermediate depth stratum there was evidence for OTU turnover
Data from: Linking social and spatial networks to viral community phylogenetics reveals subtype-specific transmission dynamics in African lions
负责人:
Fountain-Jones, Nicholas M.
关键词:
feline immunodeficiency virus generalized dissimilarity modelling landscape ecology OTU networks transmission mode wildlife disease community ecology
DOI:
doi:10.5061/dryad.8j3s3
摘要:
1.Heterogeneity within pathogen species can have important consequences for how pathogens transmit across landscapes; however, discerning different transmission routes is challenging. 2.Here we apply both phylodynamic and phylogenetic community ecology techniques to examine the consequences of pathogen heterogeneity on transmission by assessing subtype specific transmission pathways in a social carnivore. 3.We use comprehensive social and spatial network data to examine transmission pathways for three subtypes of feline immunodeficiency virus (FIVPle) in African lions (Panthera leo) at multiple scales in the Serengeti National Park, Tanzania. We used FIVPle molecular data to examine the role of social organization and lion density in shaping transmission pathways and tested to what extent vertical (i.e., father and/or mother offspring relationships) or horizontal (between unrelated individuals) transmission underpinned these patterns for each subtype. Using the same data, we constructed subtype specific FIVPle co-occurrence networks and assessed what combination of social networks, spatial networks, or co-infection best structured the FIVPle network. 4.While social organization (i.e., pride) was an important component of FIVPle transmission pathways at all scales, we find that FIVPle subtypes exhibited different transmission pathways at within- and between-pride scales. A combination of social and spatial networks, coupled with consideration of subtype co-infection, was likely to be important for FIVPle transmission for the two major subtypes, but the relative contribution of each factor was strongly subtype specific. 5.Our study provides evidence that pathogen heterogeneity is important in understanding pathogen transmission, which could have consequences for how endemic pathogens are managed. Furthermore, we demonstrate that community phylogenetic ecology coupled with phylodynamic techniques can reveal insights into the differential evolutionary pressures acting on virus subtypes, which can manifest into landscape-level effects.
Data from: Soil fungal communities of grasslands are environmentally structured at a regional scale in the Alps
负责人:
关键词:
Trifolium medium;Microglossum;Anthoxanthum odoratum;Clavulina;Anthriscus sylvestris;Helianthemum nummularium;Arabis alpina;Juncus effusus;Vaccinium gaultherioides;Scabiosa lucida;Saxifraga paniculata;Cadophora;Ligusticum mutellina;Phyteuma spicatum;Achillea millefolium;Hypericum maculatum;Ranunculus aconitifolius;Lecythophora;Galium megalospermum;Geranium sylvaticum;Poa supina;Glechoma hederacea;Environmental DNA;Leontodon helveticus;Bromus hordeaceus;Carex atrata;Rumex acetosa;Helictotrichon versicolor;Polygala chamaebuxus;Calamagrostis varia;Luzula multiflora;Ajuga reptans;Trisetum flavescens;Alchemilla vulgaris;Tetracladium;Environmental Metagenomics;Rhinanthus alectorolophus;Russula;Arrhenatherum elatius;Poa minor;Prunella vulgaris;Gentiana verna;Festuca rubra;Trifolium badium;Pedicularis foliosa;Filipendula ulmaria;Cirsium acaule;Daucus carota;Coprinus;Trifolium pratense;Salix herbacea;Ononis repens;Knautia arvensis;Mortierella;Athamanta cretensis;Campanula cochleariifolia;Homogyne alpina;Taraxacum officinale;Rumex crispus;elevation gradient;Lolium perenne;Gibberella;Carex ferruginea;Tragopogon pratensis;Rhinanthus minor;Silene vulgaris;Campanula glomerata;Saxifraga aizoides;Molinia caerulea;Acaulospora;Embellisia;Rhododendron ferrugineum;Gentiana lutea;Cerastium latifolium;Androsace chamaejasme;Cerastium fontanum;Aster bellidiastrum;Herpotrichia;Gentiana acaulis;Trichosporon;Cudoniella;Saxifraga moschata;Lolium multiflorum;Polygonum viviparum;Crepis pyrenaica;Gentiana bavarica;Medicago lupulina;Tofieldia calyculata;Festuca pratensis;Festuca quadriflora;Fungi;Ranunculus alpestris;Phialocephala;Caltha palustris;Cryptococcus;Campanula rotundifolia;Valeriana montana;Cerastium arvense;Hippocrepis comosa;Thlaspi rotundifolium;Leucanthemum vulgare;Metarhizium;Chaerophyllum hirsutum;Species Interactions;Ranunculus acris;Leontodon autumnalis;Poa alpina;Carex pallescens;Hedysarum hedysaroides;Plantago media;Veronica officinalis;Vicia sepium;Anemone narcissiflora;mitosporic Trichocomaceae;Geum rivale;Gentiana campestris;Carex sempervirens;Myosotis arvensis;Cosmospora;Soldanella alpina;Carex flacca;Phleum pratense;Lathyrus pratensis;Rhodotorula;Glomus;Crepis vesicaria;Campanula scheuchzeri;Articulospora;Thymus praecox;environmental gradients;Monodictys;Gypsophila repens;Solidago virgaurea;Thesium alpinum;Pimpinella saxifraga;Pulsatilla alpina;Carduus defloratus;Centaurea montana;Community Ecology;Prunella grandiflora;Holcus lanatus;Primula farinosa;Veratrum album;Leohumicola;Trollius europaeus;Carex sylvatica;Luzula campestris;Primula veris;Cladophialophora;Viola biflora;Deschampsia cespitosa;Vaccinium myrtillus;Pimpinella major;Centaurea jacea;Silene acaulis;Veronica persica;Camarophyllopsis;Polygonum bistorta;Arnica montana;Bromus erectus;Kernia;Alchemilla conjuncta;Centaurea scabiosa;Lachnum;Diversispora;Poa cenisia;Brachypodium pinnatum;Olpidium;Astrantia major;Hypochaeris radicata;Lotus corniculatus;Trifolium montanum;Lysimachia nummularia;Sanguisorba minor;Senecio doronicum;Preussia;Acinos alpinus;Achillea atrata;Onobrychis montana;Aposeris foetida;Cruciata laevipes;Adenostyles glabra;Knautia dipsacifolia;Potentilla erecta;Euphorbia cyparissias;Landscape Genetics;Fragaria vesca;Pritzelago alpina;Stachys officinalis;Bellis perennis;Festuca violacea;Phleum rhaeticum;Dryas octopetala;Primula elatior;Salvia pratensis;Saxifraga oppositifolia;mitosporic Herpotrichiellaceae;Podospora;Linum catharticum;Agrostis schraderiana;Exophiala;Origanum vulgare;Trifolium repens;Ganoderma;Campanula barbata;Cirsium oleraceum;Plantago major;Poa trivialis;Veronica chamaedrys;Carlina acaulis;Anthyllis vulneraria;Poa pratensis;Vicia cracca;Agrostis capillaris;Holocene\/Anthropocene;Dactylis glomerata;Ranunculus montanus;Geomyces;Tussilago farfara;Entoloma;Phyteuma orbiculare;Carex nigra;Geum montanum;Globularia nudicaulis;Doronicum grandiflorum;Myosotis alpestris;Alatospora;Phleum hirsutum;Taraxacum alpinum;Vicia sativa;Agrostis rupestris;Hieracium villosum;Ranunculus repens;Laccaria;Hieracium lactucella;Cylindrocarpon;Luzula sylvatica;Cirsium spinosissimum;Polygala vulgaris;Salix retusa;plant-fungi interactions;Inocybe;Gentiana purpurea;Agrostis alpina;Plantago alpina;Alchemilla xanthochlora;Sesleria caerulea;Hypocrea;Parnassia palustris;Globularia cordifolia;Trifolium thalii;Alchemilla glabra;Plantago atrata;Briza media;Rumex alpinus;Clinopodium vulgare;Carex panicea;Hieracium pilosella;Cynosurus cristatus;Plantago lanceolata;Petasites paradoxus;Veronica alpina;Bartsia alpina;Soil fungal community;Potentilla crantzii;Chaerophyllum aureum;Claroideoglomus;Nardus stricta;Tremella;Galium album;Leontodon hispidus;Paecilomyces;Microdochium;Oxytropis jacquinii;phylogenetic diversity;Salix reticulata;Neonectria;Heracleum sphondylium;Pseudeurotium;Pseudonectria;Mrakia;Galium pumilum;Linaria alpina;Agrostis stolonifera;Carum carvi;Galium anisophyllon;Potentilla aurea;Veronica aphylla;Adenostyles alliariae;Vaccinium vitisidaea;Crepis aurea;Hygrocybe;Hieracium bifidum;alpine grassland;Panaeolus;454 pyrosequencing;Laserpitium latifolium
DOI:
doi:10.5061/dryad.88fm3
摘要:
sequences that were clustered into operational taxonomic units (OTUs). The OTU diversity-area relationship revealed uneven distribution of fungal taxa ac
Data from: Metabarcoding dietary analysis of coral dwelling predatory fish demonstrates the minor contribution of coral mutualists to their highly partitioned, generalist diet
负责人:
关键词:
Camallanidae;Vanikoridae;Miraciidae;Coelosphaeridae;Temora discaudata;Eviota;Trematoda;Actaeinae;food web;Autolytinae;Menaethius monoceros;Copepoda;Echinoidea;Caranx melampygus;Chromis vanderbilti;Liocarpilodes integerrimus;Trapezia areolata;Polychaeta;Trapezia rufopunctata;Cirratulidae;Palaemonella tenuipes;Lienardia mighelsi;Thalassoma hardwicke;Gammaropsis;Maxillopoda;Lysiosquillidae;Harpacticus;Cerithium;Enterogona;Gobiidae;Terebellidae;Pomachromis fuscidorsalis;Tanaidacea;Trapezia bidentata;Petrolisthes;Chlorurus sordidus;Syllidae;Maera;Pandalidae;Ampharetidae;Palaemonidae;Thor;Poecilostomatoida;Gigartinales;Apogon nigrofasciatus;Huenia;Hapalocarcinus;Pagurixus;Lithoglyptidae;Palaemonella rotumana;Mysida;Scarus globiceps;COI;Galatheidae;Palmyria;Pilodius;Plumularia;Demospongiae;Agalmatidae;Clionaidae;Decapterus macarellus;Emiliania huxleyi;Phylladiorhynchus;Dolabrifera dolabrifera;Paranamixis fijiensis;Gelidiaceae;Ophiactis;Brachyura;Nemichthys;Anthuridea;Aphelenchoididae;Argonautidae;Clausocalanus arcuicornis;Nephtyidae;Dendropoma;Eviota disrupta;Amblycirrhitus bimacula;Amphilochus;Santiidae;Plectroglyphidodon dickii;Chromis margaritifer;Titanoderma prototypum;Enchelyurus ater;Manaethius monoceros;Xanthias lamarcki;coral reefs;Atergatopsis germaini;Caranx sexfasciatus;Calcinus morgani;Cerithiidae;Dascyllus flavicaudus;Bemlos waipio;Viriola incisa;mutualism;Metabarcoding;Gymnothorax buroensis;Chlorodiella laevissima;Corallinaceae;Sagittidae;Candacia ethiopica;Harpacticoida;Phylladiorhynchus integrirostris;Azadinium poporum;Gastropoda;Phenacolepadidae;Homalopoma maculosa;Ctenochaetus striatus;Amphipoda;Clausocalanus minor;Scarus psittacus;Alpheidae;Sipuncula;Caridea;Chromis viridis;Esola;Isopoda;Jonesius triunguiculatus;Calanoida;Ceramiales;Cirripectes variolosus;Petalifera;Didemnidae;Perciformes;Plectroglyphidodon johnstonianus;Ptychoderidae;Chlorodiella crispipleopa;Corycaeus;Siphonostomatoida;Pseudocheilinus hexataenia;Sebastapistes tinkhami;Cuapetes ensifrons;Pocillopora;Stegastes nigricans;Gomphosus varius;Pascula muricata;Acartia negligens;Chaetodon trichrous;Zebrasoma scopas;Dascyllus aruanus;Stomatolina rubra;Vitricithna marmorata;Oithonidae;Perinia tumida;Hydrozoa;Cyclodius ungulatus;Halopteris constricta;Hippolytidae;Pilodius pugil;Arete indicus;Polynesoecetes kekeae;trophic interactions;Raoulserenea ornata;Fennera chacei;Oncaeidae;Trapeziidae;Bunodeopsis medusoides;Lachnopodus subacutus;Cestoda;Halichoeres hortulanus;Stylocheilus striatus;Erythrotrichiaceae;Monetaria annulus;Sargassaceae;Trapezia serenei;Ophiocoma pica;Decapoda;Harpiliopsis beaupresii;Drupa ricinus;3 days;Notopygos;Polynoidae;Galathea mauritiana;Margaretta;Verrucidae;Monetaria caputdraconis;Alpheus dolerus;Haminoea natalensis;Paguridae;Cheilopogon pitcairnensis;Munnidae;Pilodius flavus;Turbellaria;Chlorodiella barbata;Clausocalanus furcatus;Dendropoma gregaria;Malacostraca
DOI:
doi:10.5061/dryad.v0p71
摘要:
data revealed a total of 292 Operational Taxonomic Units (OTU) in the gut contents of the arc-eye hawkfish (Paracirrhites arcatus), the flame hawkfish

首页上一页1234下一页尾页

意 见 箱

匿名:登录

个人用户登录

找回密码

第三方账号登录

忘记密码

个人用户注册

必须为有效邮箱
6~16位数字与字母组合
6~16位数字与字母组合
请输入正确的手机号码

信息补充