筛选
科学数据
统计数据
共检索到96条 ,权限内显示50条;
IPCC Climate Change Data: CSIRO A1a Model: 2080 Wind Speed
- 负责人:
- DOI:
- doi:10.5063/aa/dpennington.86.2
- 摘要:
- From the IPCC website: The A1 Family storyline is a case of rapid and successful economic development, in which regional averages of income per capita converge - current distinctions between poor and rich countries eventually dissolve. In this scenario family, demographic and economic trends are closely linked, as affluence is correlated with long life and small families (low mortality and low fertility). Global population grows to some nine billion by 2050 and declines to about seven billion by 2100. Average age increases, with the needs of retired people met mainly through their accumulated savings in private pension systems. The global economy expands at an average annual rate of about three percent to 2100. This is approximately the same as average global growth since 1850, although the conditions that lead to a global economic in productivity and per capita incomes are unparalleled in history. Income per capita reaches about US$21,000 by 2050. While the high average level of income per capita contributes to a great improvement in the overall health and social conditions of the majority of people, this world is not without its problems. In particular, many communities could face some of the problems of social exclusion encountered by the wealthiest countries in the 20th century and in many places income growth could come with increased pressure on the global commons. Energy and mineral resources are abundant in this scenario family because of rapid technical progress, which both reduce the resources need to produce a given level of output and increases the economically recoverable reserves. Final energy intensity (energy use per unit of GDP) decreases at an average annual rate of 1.3 percent. With the rapid increase in income, dietary patterns shift initially significantly towards increased consumption of meat and dairy products, but may decrease subsequently with increasing emphasis on health of an aging society. High incomes also translate into high car ownership, sprawling suburbanization and dense transport networks, nationally and internationally. Land prices increase faster than income per capita. These factors along with high wages result in a considerable intensification of agriculture. Three scenario groups are considered in A1 scenario family reflecting the uncertainty in development of energy sources and conversion technologies in this rapidly changing world. Near-term investment decisions may introduce long-term irreversibilities into the market, with lock-in to one technological configuration or another. The A1B scenario group is based on a balanced mix of energy sources and has an intermediate level of CO2 emissions, but depending on the energy sources developed, emissions in the variants cover a very wide range. In the fossil-fuel intensive scenario group A1FI, emissions approach those of the A2 scenarios; conversely in scenario group A1T with low labor productivity or of rapid progress in "post-fossil" energy technologies, emissions are intermediate between those of B1 and B2. These scenario variants have been introduced into the A1 storyline because of its "high growth with high tech" nature, where differences in alternative technology developments translate into large differences in future GHG emission levels Ecological resilience is assumed to be high in this storyline. Environmental amenities are viewed in a utilitarian way, based on their influence on the formal economy. The concept of environmental quality might change in this storyline from "conservation" of nature to active "management" - and marketing - of natural and environmental services. Data are available for the following periods: 1961-1990, 2010-2039; 2040-2069; and 2090-2099 Mean monthly and change fields.
IPCC Climate Change Data: HADCM3 A1F Model: 2080 Radiance
- 负责人:
- DOI:
- doi:10.5063/aa/dpennington.186.1
- 摘要:
- The recent experiments performed at the Hadley Centre have used the new Unified Model (Cullen, 1993). These experiments represent a large step forward in the way climate change is modelled by GCMs and raises new possibilities for scenario construction. This experiment has overcome some of the major difficulties that were associated with the previous generations of equilibrium (circa IPCC 1990) and cold-start transient (circa IPCC 1992) climate change experiments. HadCM2 has a spatial resolution of 2.5 degrees x 3.75 degrees (latitude by longitude) and the representation produces a grid box resolution of 96 x 73 grid cells. This produces a surface spatial resolution of about 417km x 278 km reducing to 295 x 278km at 45 degrees North and South (comparable to a spectral resolution of T42). The equilibrium climate sensitivity (DT2x) of HadCM2, that is the global-mean temperature response to a doubling of effective CO2 concentration, is approximately 2.5 degrees C, although, this quantity varies with the time-scale considered. This is somewhat lower than most other GCMs (IPCC, 1992). In order to undertake a 'warm-start' experiment it is necessary to perturb the model with a forcing from an early historical era, when the radiative forcing was relatively small compared to the present. The Hadley Centre started their experiments performed with HadCM2 with forcing from the middle industrial era, about 1860 Mitchell et al., 1995 and Johns et al., 1995. The greenhouse gas only integrations, HadCM2GG, used the combined forcing of all the greenhouse gases as an equivalent CO2 concentration. A further series of integrations, HadCM2GS, used the combined equivalent CO2 concentration plus the negative forcing from sulphate aerosols. The HadCM2GG integrations simulated the change in forcing of the climate system by greenhouse gases since the early industrial period (taken by HadCM2 to be 1860). The addition of the negative forcing effects of sulphate aerosols represents the direct radiative forcing due to anthropogenic sulphate aerosols by means of an increase in clear-sky surface albedo proportional to the local sulphate loading (refer to Mitchell et al., 1995 for details of this method). The indirect effects of aerosols were not simulated. The modelled control climate shows a negligible long term trend in surface air temperature over the first 400 years. The trend is about +0.04 degrees C per century, which is comparable to other such experiments. HadCM2CON represents an improvement over previous generations of GCMs that have been used at the Hadley Centre (Johns et al., 1995 and Airey et al., 1995). The experiments performed have simulated the observed climate system using estimated forcing perturbations since 1860. Johns et al., (1995) and Mitchell et al., (1995) have established that HadCM2's sensitivity is consistent with the real climate system. The agreement between the observed global-mean temperature record and that produced in these experiments is better for HadCM2GS than for HadCM2GG. This implies that HadCM2Gs has captured the observed signal of global-mean temperature changes better than HadCM2GG for the recent 100-year record. The climate sensitivity of HadCM2 is about 2.5 degrees C.The A1 Family storyline is a case of rapid and successful economic development, in which regional averages of income per capita converge - current distinctions between poor and rich countries eventually dissolve. In this scenario family, demographic and economic trends are closely linked, as affluence is correlated with long life and small families (low mortality and low fertility). Global population grows to some nine billion by 2050 and declines to about seven billion by 2100. Average age increases, with the needs of retired people met mainly through their accumulated savings in private pension systems. The global economy expands at an average annual rate of about three percent to 2100. This is approximately the same as average global growth since 1850, although the conditions that lead to a global economic in productivity and per capita incomes are unparalleled in history. Income per capita reaches about US$21,000 by 2050. While the high average level of income per capita contributes to a great improvement in the overall health and social conditions of the majority of people, this world is not without its problems. In particular, many communities could face some of the problems of social exclusion encountered by the wealthiest countries in the 20th century and in many places income growth could come with increased pressure on the global commons. Energy and mineral resources are abundant in this scenario family because of rapid technical progress, which both reduce the resources need to produce a given level of output and increases the economically recoverable reserves. Final energy intensity (energy use per unit of GDP) decreases at an average annual rate of 1.3 percent. With the rapid increase in income, dietary patterns shift initially significantly towards increased consumption of meat and dairy products, but may decrease subsequently with increasing emphasis on health of an aging society. High incomes also translate into high car ownership, sprawling suburbanization and dense transport networks, nationally and internationally. Land prices increase faster than income per capita. These factors along with high wages result in a considerable intensification of agriculture. Three scenario groups are considered in A1 scenario family reflecting the uncertainty in development of energy sources and conversion technologies in this rapidly changing world. Near-term investment decisions may introduce long-term irreversibilities into the market, with lock-in to one technological configuration or another. The A1B scenario group is based on a balanced mix of energy sources and has an intermediate level of CO2 emissions, but depending on the energy sources developed, emissions in the variants cover a very wide range. In the fossil-fuel intensive scenario group A1FI, emissions approach those of the A2 scenarios; conversely in scenario group A1T with low labor productivity or of rapid progress in "post-fossil" energy technologies, emissions are intermediate between those of B1 and B2. These scenario variants have been introduced into the A1 storyline because of its "high growth with high tech" nature, where differences in alternative technology developments translate into large differences in future GHG emission levels Ecological resilience is assumed to be high in this storyline. Environmental amenities are viewed in a utilitarian way, based on their influence on the formal economy. The concept of environmental quality might change in this storyline from "conservation" of nature to active "management" - and marketing - of natural and environmental services. Data are available for the following periods: 1961-1990, 2010-2039; 2040-2069; and 2090-2099 Mean monthly and change fields.
IPCC Climate Change Data: HADCM3 B2a Model: 2080 Maximum Temperature
- 负责人:
- DOI:
- doi:10.5063/aa/dpennington.240.1
- 摘要:
- The recent experiments performed at the Hadley Centre have used the new Unified Model (Cullen, 1993). These experiments represent a large step forward in the way climate change is modelled by GCMs and raises new possibilities for scenario construction. This experiment has overcome some of the major difficulties that were associated with the previous generations of equilibrium (circa IPCC 1990) and cold-start transient (circa IPCC 1992) climate change experiments. HadCM2 has a spatial resolution of 2.5 degrees x 3.75 degrees (latitude by longitude) and the representation produces a grid box resolution of 96 x 73 grid cells. This produces a surface spatial resolution of about 417km x 278 km reducing to 295 x 278km at 45 degrees North and South (comparable to a spectral resolution of T42). The equilibrium climate sensitivity (DT2x) of HadCM2, that is the global-mean temperature response to a doubling of effective CO2 concentration, is approximately 2.5 degrees C, although, this quantity varies with the time-scale considered. This is somewhat lower than most other GCMs (IPCC, 1992). In order to undertake a 'warm-start' experiment it is necessary to perturb the model with a forcing from an early historical era, when the radiative forcing was relatively small compared to the present. The Hadley Centre started their experiments performed with HadCM2 with forcing from the middle industrial era, about 1860 Mitchell et al., 1995 and Johns et al., 1995. The greenhouse gas only integrations, HadCM2GG, used the combined forcing of all the greenhouse gases as an equivalent CO2 concentration. A further series of integrations, HadCM2GS, used the combined equivalent CO2 concentration plus the negative forcing from sulphate aerosols. The HadCM2GG integrations simulated the change in forcing of the climate system by greenhouse gases since the early industrial period (taken by HadCM2 to be 1860). The addition of the negative forcing effects of sulphate aerosols represents the direct radiative forcing due to anthropogenic sulphate aerosols by means of an increase in clear-sky surface albedo proportional to the local sulphate loading (refer to Mitchell et al., 1995 for details of this method). The indirect effects of aerosols were not simulated. The modelled control climate shows a negligible long term trend in surface air temperature over the first 400 years. The trend is about +0.04 degrees C per century, which is comparable to other such experiments. HadCM2CON represents an improvement over previous generations of GCMs that have been used at the Hadley Centre (Johns et al., 1995 and Airey et al., 1995). The experiments performed have simulated the observed climate system using estimated forcing perturbations since 1860. Johns et al., (1995) and Mitchell et al., (1995) have established that HadCM2's sensitivity is consistent with the real climate system. The agreement between the observed global-mean temperature record and that produced in these experiments is better for HadCM2GS than for HadCM2GG. This implies that HadCM2Gs has captured the observed signal of global-mean temperature changes better than HadCM2GG for the recent 100-year record. The climate sensitivity of HadCM2 is about 2.5 degrees CThe central elements of the B1 future are a high level of environmental and social consciousness combined with a globally coherent approach to sustainable development. A strong welfare net prevents social exclusion on the basis of poverty. However, counter-currents may develop and in some places people may not conform to the main social and environmental intentions of the mainstream in this scenario family. Particular effort is devoted to increasing resource efficiency. Comprehensive incentive systems, combined with advances in international institutions, permit the rapid diffusion of cleaner technology. R and D to this end is also enhanced together with education and capacity building for clean and equitable development. Organizational measures are adopted to reduce material wastage, maximizing reuse and recycling. The combination of technical and organizational change yields high levels of material and energy saving as well as reductions in pollution. Labor productivity also improves as a byproduct of these efforts. Variants considered within the B1 family of scenarios include different rates of GDP growth and dematerialization (e.g., energy intensity declines). The demographic transition to low mortality and fertility occurs at the same rate as in A1 but for slightly different reasons, motivated partly by social and environmental concerns. Global population reaches nine billion by 2050 and declines to about seven billion by 2100. This is a world with high levels of economic activity and significant and deliberate progress toward international and national income equality. Global income per capita in 2050 averages US$13,000; somewhat lower than in A1. A higher proportion of this income is spent on services rather than on material goods, and on quality rather than quantity, because of less emphasis on material goods and also higher resource prices. The B1 storyline sees a relatively smooth transition to alternative energy systems as conventional oil resources decline. There is extensive use of conventional and unconventional gas as the cleanest fossil resource during the transition, but the major push is towards post fossil technologies driven in large part by environmental concerns. Given the high environmental consciousness and institutional effectiveness in the B1 storyline, environmental quality is high, as most potentially negative environmental aspects of rapid development are anticipated and dealt with effectively locally, nationally, and internationally. For example, transboundary air pollution (acid rain) is basically eliminated in the long-term. Land-use is carefully managed to counteract the impacts of activities potentially damaging to the environment. Cities are compact and designed for public and non-motorized transport, with suburban developments tightly controlled. Strong incentives for low-input, low-impact agriculture along with maintenance of large areas of wilderness contribute to high food prices with much lower levels of meat consumption than those in A1. These proactive local and regional environmental measures and policies also lead to relatively low GHG emissions even in the absence of explicit interventions directed at mitigating climate change.
IPCC Climate Change Data: CSIRO A1a Model: 2080 Mean Temperature
- 负责人:
- DOI:
- doi:10.5063/aa/dpennington.81.4
- 摘要:
- The CSIRO Atmospheric Research Mark 2b climate model (Hirst et al., 1996, 1999) has recently been used for a number of more sophisticated climate change simulations. These start from 1880 to avoid the "cold start problem". This version of the CSIRO model includes the Gent-McWilliams mixing scheme in the ocean and shows greatly reduced climate drift relative to earlier versions (e.g. Dix and Hunt, 1998). The drift in global mean surface temperature in the new control run is about -0.02 degrees C/century. Note that the model uses flux correction. The model atmosphere has 9 levels in the vertical and horizontal resolution of spectral R21 (approximately 5.6 by 3.2 degrees). The ocean model has the same horizontal resolution with 21 levels. The equilibrium sensitivity to doubled CO2 of a mixed layer ocean version of the model is 4.3 degrees. This is at the high end of the range of model sensitivities (e.g. IPCC 1995, Table 6.3). In the basic greenhouse gas experiment the model combines the effect of all radiatively active trace gases into an "equivalent" CO2 concentration. Observed concentrations are used from 1880 to 1990 and the IS92a projections into the future. This gives close to a 1%/year compounding increase of equivalent CO2. Another model experiment includes the negative radiative forcing from atmospheric sulphate aerosol. The direct aerosol forcing is included via a perturbation of the surface albedo, similarly to the Hadley Centre experiments described by Mitchell et al (1995) and Mitchell and Johns (1997) . The sulphate concentrations are the same as used in the Hadley Centre experiments. However the chosen aerosol optical properties are different, giving a present day forcing due to anthropogenic sulphate of about -0.4 W/m^2. This can be compared to the 1880-1990 greenhouse gas forcing of about 2 W/m^2. The magnitude of the 20th century warming in the model including aerosol matches the observed reasonably well. However there are a number of forcings missing from the model, including solar variability, sulphate indirect effect and the effect of soot. The climate sensitivity of CSIRO-Mk2 is about 4.3 degrees C (Watterson et al.,1997).From the IPCC website: The A1 Family storyline is a case of rapid and successful economic development, in which regional averages of income per capita converge - current distinctions between poor and rich countries eventually dissolve. In this scenario family, demographic and economic trends are closely linked, as affluence is correlated with long life and small families (low mortality and low fertility). Global population grows to some nine billion by 2050 and declines to about seven billion by 2100. Average age increases, with the needs of retired people met mainly through their accumulated savings in private pension systems. The global economy expands at an average annual rate of about three percent to 2100. This is approximately the same as average global growth since 1850, although the conditions that lead to a global economic in productivity and per capita incomes are unparalleled in history. Income per capita reaches about US$21,000 by 2050. While the high average level of income per capita contributes to a great improvement in the overall health and social conditions of the majority of people, this world is not without its problems. In particular, many communities could face some of the problems of social exclusion encountered by the wealthiest countries in the 20th century and in many places income growth could come with increased pressure on the global commons. Energy and mineral resources are abundant in this scenario family because of rapid technical progress, which both reduce the resources need to produce a given level of output and increases the economically recoverable reserves. Final energy intensity (energy use per unit of GDP) decreases at an average annual rate of 1.3 percent. With the rapid increase in income, dietary patterns shift initially significantly towards increased consumption of meat and dairy products, but may decrease subsequently with increasing emphasis on health of an aging society. High incomes also translate into high car ownership, sprawling suburbanization and dense transport networks, nationally and internationally. Land prices increase faster than income per capita. These factors along with high wages result in a considerable intensification of agriculture. Three scenario groups are considered in A1 scenario family reflecting the uncertainty in development of energy sources and conversion technologies in this rapidly changing world. Near-term investment decisions may introduce long-term irreversibilities into the market, with lock-in to one technological configuration or another. The A1B scenario group is based on a balanced mix of energy sources and has an intermediate level of CO2 emissions, but depending on the energy sources developed, emissions in the variants cover a very wide range. In the fossil-fuel intensive scenario group A1FI, emissions approach those of the A2 scenarios; conversely in scenario group A1T with low labor productivity or of rapid progress in "post-fossil" energy technologies, emissions are intermediate between those of B1 and B2. These scenario variants have been introduced into the A1 storyline because of its "high growth with high tech" nature, where differences in alternative technology developments translate into large differences in future GHG emission levels Ecological resilience is assumed to be high in this storyline. Environmental amenities are viewed in a utilitarian way, based on their influence on the formal economy. The concept of environmental quality might change in this storyline from "conservation" of nature to active "management" - and marketing - of natural and environmental services. Data are available for the following periods: 1961-1990, 2010-2039; 2040-2069; and 2090-2099 Mean monthly and change fields.
IPCC Climate Change Data: CSIRO A1a Model: 2080 Minimum Temperature
- 负责人:
- DOI:
- doi:10.5063/aa/dpennington.80.5
- 摘要:
- The CSIRO Atmospheric Research Mark 2b climate model (Hirst et al., 1996, 1999) has recently been used for a number of more sophisticated climate change simulations. These start from 1880 to avoid the "cold start problem". This version of the CSIRO model includes the Gent-McWilliams mixing scheme in the ocean and shows greatly reduced climate drift relative to earlier versions (e.g. Dix and Hunt, 1998). The drift in global mean surface temperature in the new control run is about -0.02 degrees C/century. Note that the model uses flux correction. The model atmosphere has 9 levels in the vertical and horizontal resolution of spectral R21 (approximately 5.6 by 3.2 degrees). The ocean model has the same horizontal resolution with 21 levels. The equilibrium sensitivity to doubled CO2 of a mixed layer ocean version of the model is 4.3 degrees. This is at the high end of the range of model sensitivities (e.g. IPCC 1995, Table 6.3). In the basic greenhouse gas experiment the model combines the effect of all radiatively active trace gases into an "equivalent" CO2 concentration. Observed concentrations are used from 1880 to 1990 and the IS92a projections into the future. This gives close to a 1%/year compounding increase of equivalent CO2. Another model experiment includes the negative radiative forcing from atmospheric sulphate aerosol. The direct aerosol forcing is included via a perturbation of the surface albedo, similarly to the Hadley Centre experiments described by Mitchell et al (1995) and Mitchell and Johns (1997) . The sulphate concentrations are the same as used in the Hadley Centre experiments. However the chosen aerosol optical properties are different, giving a present day forcing due to anthropogenic sulphate of about -0.4 W/m^2. This can be compared to the 1880-1990 greenhouse gas forcing of about 2 W/m^2. The magnitude of the 20th century warming in the model including aerosol matches the observed reasonably well. However there are a number of forcings missing from the model, including solar variability, sulphate indirect effect and the effect of soot. The climate sensitivity of CSIRO-Mk2 is about 4.3 degrees C (Watterson et al.,1997).From the IPCC website: The A1 Family storyline is a case of rapid and successful economic development, in which regional averages of income per capita converge - current distinctions between poor and rich countries eventually dissolve. In this scenario family, demographic and economic trends are closely linked, as affluence is correlated with long life and small families (low mortality and low fertility). Global population grows to some nine billion by 2050 and declines to about seven billion by 2100. Average age increases, with the needs of retired people met mainly through their accumulated savings in private pension systems. The global economy expands at an average annual rate of about three percent to 2100. This is approximately the same as average global growth since 1850, although the conditions that lead to a global economic in productivity and per capita incomes are unparalleled in history. Income per capita reaches about US$21,000 by 2050. While the high average level of income per capita contributes to a great improvement in the overall health and social conditions of the majority of people, this world is not without its problems. In particular, many communities could face some of the problems of social exclusion encountered by the wealthiest countries in the 20th century and in many places income growth could come with increased pressure on the global commons. Energy and mineral resources are abundant in this scenario family because of rapid technical progress, which both reduce the resources need to produce a given level of output and increases the economically recoverable reserves. Final energy intensity (energy use per unit of GDP) decreases at an average annual rate of 1.3 percent. With the rapid increase in income, dietary patterns shift initially significantly towards increased consumption of meat and dairy products, but may decrease subsequently with increasing emphasis on health of an aging society. High incomes also translate into high car ownership, sprawling suburbanization and dense transport networks, nationally and internationally. Land prices increase faster than income per capita. These factors along with high wages result in a considerable intensification of agriculture. Three scenario groups are considered in A1 scenario family reflecting the uncertainty in development of energy sources and conversion technologies in this rapidly changing world. Near-term investment decisions may introduce long-term irreversibilities into the market, with lock-in to one technological configuration or another. The A1B scenario group is based on a balanced mix of energy sources and has an intermediate level of CO2 emissions, but depending on the energy sources developed, emissions in the variants cover a very wide range. In the fossil-fuel intensive scenario group A1FI, emissions approach those of the A2 scenarios; conversely in scenario group A1T with low labor productivity or of rapid progress in "post-fossil" energy technologies, emissions are intermediate between those of B1 and B2. These scenario variants have been introduced into the A1 storyline because of its "high growth with high tech" nature, where differences in alternative technology developments translate into large differences in future GHG emission levels Ecological resilience is assumed to be high in this storyline. Environmental amenities are viewed in a utilitarian way, based on their influence on the formal economy. The concept of environmental quality might change in thisstoryline from"conservation" of nature to active "management" - and marketing - of natural and environmental services. Data are available for the following periods: 1961-1990, 2010-2039; 2040-2069; and 2090-2099 Mean monthly and change fields.
IPCC Climate Change Data: NIES99 A1a Model: 2080 Radiance
- 负责人:
- DOI:
- doi:10.5063/aa/dpennington.270.1
- 摘要:
- The model used here is a coupled ocean-atmosphere model that consists of the CCSR/NIES atmospheric GCM, the CCSR ocean GCM, a thermodynamic sea-ice model, and a river routing model (Abe-Ouchi et al., 1996). The spatial resolution is T21 spectral truncation (roughly 5.6 degrees latitude/longitude) and 20 vertical levels for the atmospheric part, and roughly 2.8 degrees horizontal grid and 17 vertical levels for the oceanic part. Flux adjustment for atmosphere-ocean heat and water exchange is applied to prevent a drift of the modelled climate. The atmospheric model adopts a radiation scheme based on the k-distribution, two-stream discrete ordinate method (DOM) (Nakajima and Tanaka, 1986). This scheme can deal with absorption, emission and scattering by gases, clouds and aerosol particles in a consistent manner. In the calculation of sulphate aerosol optical properties, the volumetric mode radius of the sulphate particle in dry environment is assumed to be 0.2 micron. The hygroscopic growth of the sulphate is considered by an empirical fit of d'Almeida et al. (1991). The vertical distribution of the sulphate aerosol is assumed to be constant in the lowest 2 km of the atmosphere. The concentrations of greenhouse gases are represented by equivalent-CO2. Three integrations are made for 200 model years (1890-2090). In the control experiment (CTL), the globally uniform concentration of greenhouse gases is kept constant at 345 ppmv CO2-equivalent and the concentration of sulphate is set to zero. In the experiment GG, the concentration of greenhouse gases is gradually increased, while that of sulphate is set to zero. In the experiments GS, the increase in anthropogenic sulphate as well as that in greenhouse gases is given and the aerosol scattering (the direct effect of aerosol) is explicitly represented in the way described above. The indirect effect of aerosol is not included in any experiment. The scenario of atmospheric concentrations of greenhouse gases and sulphate aerosols is given in accordance with Mitchell and Johns (1997). The increase in greenhouse gases is based on the historical record from 1890 to 1990 and is increased by 1 percent / yr (compound) after 1990. For sulphate aerosols, geographical distributions of sulphate loading for 1986 and 2050, which are estimated by a sulphur cycle model (Langer and Rodhe, 1991), are used as basic patterns. Based on global and annual mean sulphur emission rates, the 1986 pattern is scaled for years before 1990; the 2050 pattern is scaled for years after 2050; and the pattern is interpolated from the two basic ones for intermediate years to give the time series of the distribution. The sulphur emission rate in the future is based on the IPCC IS92a scenario. The sulphate concentration is offset in our run so that it starts from zero at 1890. The seasonal variation of sulphate concentration is ignored. Discussion on the results of the experiments will be found in Emori et al. (1999). Climate sensitivity of the CCSR/NIES model derived by equilibrium runs is estimated to be 3.5 degrees Celsius. Global-Mean Temperature, Precipitation and CO2 Changes (w.r.t. 1961-90) for the CCSR/NIES model.From the IPCC website: The A1 Family storyline is a case of rapid and successful economic development, in which regional averages of income per capita converge - current distinctions between poor and rich countries eventually dissolve. In this scenario family, demographic and economic trends are closely linked, as affluence is correlated with long life and small families (low mortality and low fertility). Global population grows to some nine billion by 2050 and declines to about seven billion by 2100. Average age increases, with the needs of retired people met mainly through their accumulated savings in private pension systems. The global economy expands at an average annual rate of about three percent to 2100. This is approximately the same as average global growth since 1850, although the conditions that lead to a global economic in productivity and per capita incomes are unparalleled in history. Income per capita reaches about US$21,000 by 2050. While the high average level of income per capita contributes to a great improvement in the overall health and social conditions of the majority of people, this world is not without its problems. In particular, many communities could face some of the problems of social exclusion encountered by the wealthiest countries in the 20th century and in many places income growth could come with increased pressure on the global commons. Energy and mineral resources are abundant in this scenario family because of rapid technical progress, which both reduce the resources need to produce a given level of output and increases the economically recoverable reserves. Final energy intensity (energy use per unit of GDP) decreases at an average annual rate of 1.3 percent. With the rapid increase in income, dietary patterns shift initially significantly towards increased consumption of meat and dairy products, but may decrease subsequently with increasing emphasis on health of an aging society. High incomes also translate into high car ownership, sprawling suburbanization and dense transport networks, nationally and internationally. Land prices increase faster than income per capita. These factors along with high wages result in a considerable intensification of agriculture. Three scenario groups are considered in A1 scenario family reflecting the uncertainty in development of energy sources and conversion technologies in this rapidly changing world. Near-term investment decisions may introduce long-term irreversibilities into the market, with lock-in to one technological configuration or another. The A1B scenario group is based on a balanced mix of energy sources and has an intermediate level of CO2 emissions, but depending on the energy sources developed, emissions in the variants cover a very wide range. In the fossil-fuel intensive scenario group A1FI, emissions approach those of the A2 scenarios; conversely in scenario group A1T with low labor productivity or of rapid progress in "post-fossil" energy technologies, emissions are intermediate between those of B1 and B2. These scenario variants have been introduced into the A1 storyline because of its "high growth with high tech" nature, where differences in alternative technology developments translate into large differences in future GHG emission levels Ecological resilience is assumed to be high in this storyline. Environmental amenities are viewed in a utilitarian way, based on their influence on the formal economy. The concept of environmental quality might change in this storyline from "conservation" of nature to active "management" - and marketing - of natural and environmental services. Data are available for the following periods: 1961-1990, 2010-2039; 2040-2069; and 2090-2099 Mean monthly and change fields.
IPCC Climate Change Data: CSIRO A1a Model: 2080 Maximum Temperature
- 负责人:
- DOI:
- doi:10.5063/aa/dpennington.75.5
- 摘要:
- The CSIRO Atmospheric Research Mark 2b climate model (Hirst et al., 1996, 1999) has recently been used for a number of more sophisticated climate change simulations. These start from 1880 to avoid the "cold start problem". This version of the CSIRO model includes the Gent-McWilliams mixing scheme in the ocean and shows greatly reduced climate drift relative to earlier versions (e.g. Dix and Hunt, 1998). The drift in global mean surface temperature in the new control run is about -0.02 degrees C/century. Note that the model uses flux correction. The model atmosphere has 9 levels in the vertical and horizontal resolution of spectral R21 (approximately 5.6 by 3.2 degrees). The ocean model has the same horizontal resolution with 21 levels. The equilibrium sensitivity to doubled CO2 of a mixed layer ocean version of the model is 4.3 degrees. This is at the high end of the range of model sensitivities (e.g. IPCC 1995, Table 6.3). In the basic greenhouse gas experiment the model combines the effect of all radiatively active trace gases into an "equivalent" CO2 concentration. Observed concentrations are used from 1880 to 1990 and the IS92a projections into the future. This gives close to a 1%/year compounding increase of equivalent CO2. Another model experiment includes the negative radiative forcing from atmospheric sulphate aerosol. The direct aerosol forcing is included via a perturbation of the surface albedo, similarly to the Hadley Centre experiments described by Mitchell et al (1995) and Mitchell and Johns (1997) . The sulphate concentrations are the same as used in the Hadley Centre experiments. However the chosen aerosol optical properties are different, giving a present day forcing due to anthropogenic sulphate of about -0.4 W/m^2. This can be compared to the 1880-1990 greenhouse gas forcing of about 2 W/m^2. The magnitude of the 20th century warming in the model including aerosol matches the observed reasonably well. However there are a number of forcings missing from the model, including solar variability, sulphate indirect effect and the effect of soot. The climate sensitivity of CSIRO-Mk2 is about 4.3 degrees C (Watterson et al.,1997). From the IPCC website: The A1 Family storyline is a case of rapid and successful economic development, in which regional averages of income per capita converge - current distinctions between poor and rich countries eventually dissolve. In this scenario family, demographic and economic trends are closely linked, as affluence is correlated with long life and small families (low mortality and low fertility). Global population grows to some nine billion by 2050 and declines to about seven billion by 2100. Average age increases, with the needs of retired people met mainly through their accumulated savings in private pension systems. The global economy expands at an average annual rate of about three percent to 2100. This is approximately the same as average global growth since 1850, although the conditions that lead to a global economic in productivity and per capita incomes are unparalleled in history. Income per capita reaches about US$21,000 by 2050. While the high average level of income per capita contributes to a great improvement in the overall health and social conditions of the majority of people, this world is not without its problems. In particular, many communities could face some of the problems of social exclusion encountered by the wealthiest countries in the 20th century and in many places income growth could come with increased pressure on the global commons. Energy and mineral resources are abundant in this scenario family because of rapid technical progress, which both reduce the resources need to produce a given level of output and increases the economically recoverable reserves. Final energy intensity (energy use per unit of GDP) decreases at an average annual rate of 1.3 percent. With the rapid increase in income, dietary patterns shift initially significantly towards increased consumption of meat and dairy products, but may decrease subsequently with increasing emphasis on health of an aging society. High incomes also translate into high car ownership, sprawling suburbanization and dense transport networks, nationally and internationally. Land prices increase faster than income per capita. These factors along with high wages result in a considerable intensification of agriculture. Three scenario groups are considered in A1 scenario family reflecting the uncertainty in development of energy sources and conversion technologies in this rapidly changing world. Near-term investment decisions may introduce long-term irreversibilities into the market, with lock-in to one technological configuration or another. The A1B scenario group is based on a balanced mix of energy sources and has an intermediate level of CO2 emissions, but depending on the energy sources developed, emissions in the variants cover a very wide range. In the fossil-fuel intensive scenario group A1FI, emissions approach those of the A2 scenarios; conversely in scenario group A1T with low labor productivity or of rapid progress in "post-fossil" energy technologies, emissions are intermediate between those of B1 and B2. These scenario variants have been introduced into the A1 storyline because of its "high growth with high tech" nature, where differences in alternative technology developments translate into large differences in future GHG emission levels Ecological resilience is assumed to be high in this storyline. Environmental amenities are viewed in a utilitarian way, based on their influence on the formal economy. The concept of environmental quality might change in this storyline from "conservation" of nature to active "management" - and marketing - of natural and environmental services. Data are available for the following periods: 1961-1990, 2010-2039; 2040-2069; and 2090-2099 Mean monthly and change fields.
IPCC Climate Change Data: CSIRO A1a Model: 2080 Radiation
- 负责人:
- DOI:
- doi:10.5063/aa/dpennington.72.7
- 摘要:
- The CSIRO Atmospheric Research Mark 2b climate model (Hirst et al., 1996, 1999) has recently been used for a number of more sophisticated climate change simulations. These start from 1880 to avoid the "cold start problem". This version of the CSIRO model includes the Gent-McWilliams mixing scheme in the ocean and shows greatly reduced climate drift relative to earlier versions (e.g. Dix and Hunt, 1998). The drift in global mean surface temperature in the new control run is about -0.02 degrees C/century. Note that the model uses flux correction. The model atmosphere has 9 levels in the vertical and horizontal resolution of spectral R21 (approximately 5.6 by 3.2 degrees). The ocean model has the same horizontal resolution with 21 levels. The equilibrium sensitivity to doubled CO2 of a mixed layer ocean version of the model is 4.3 degrees. This is at the high end of the range of model sensitivities (e.g. IPCC 1995, Table 6.3). In the basic greenhouse gas experiment the model combines the effect of all radiatively active trace gases into an "equivalent" CO2 concentration. Observed concentrations are used from 1880 to 1990 and the IS92a projections into the future. This gives close to a 1%/year compounding increase of equivalent CO2. Another model experiment includes the negative radiative forcing from atmospheric sulphate aerosol. The direct aerosol forcing is included via a perturbation of the surface albedo, similarly to the Hadley Centre experiments described by Mitchell et al (1995) and Mitchell and Johns (1997) . The sulphate concentrations are the same as used in the Hadley Centre experiments. However the chosen aerosol optical properties are different, giving a present day forcing due to anthropogenic sulphate of about -0.4 W/m^2. This can be compared to the 1880-1990 greenhouse gas forcing of about 2 W/m^2. The magnitude of the 20th century warming in the model including aerosol matches the observed reasonably well. However there are a number of forcings missing from the model, including solar variability, sulphate indirect effect and the effect of soot. The climate sensitivity of CSIRO-Mk2 is about 4.3 degrees C (Watterson et al.,1997). From the IPCC website: The A1 Family storyline is a case of rapid and successful economic development, in which regional averages of income per capita converge - current distinctions between poor and rich countries eventually dissolve. In this scenario family, demographic and economic trends are closely linked, as affluence is correlated with long life and small families (low mortality and low fertility). Global population grows to some nine billion by 2050 and declines to about seven billion by 2100. Average age increases, with the needs of retired people met mainly through their accumulated savings in private pension systems. The global economy expands at an average annual rate of about three percent to 2100. This is approximately the same as average global growth since 1850, although the conditions that lead to a global economic in productivity and per capita incomes are unparalleled in history. Income per capita reaches about US$21,000 by 2050. While the high average level of income per capita contributes to a great improvement in the overall health and social conditions of the majority of people, this world is not without its problems. In particular, many communities could face some of the problems of social exclusion encountered by the wealthiest countries in the 20th century and in many places income growth could come with increased pressure on the global commons. Energy and mineral resources are abundant in this scenario family because of rapid technical progress, which both reduce the resources need to produce a given level of output and increases the economically recoverable reserves. Final energy intensity (energy use per unit of GDP) decreases at an average annual rate of 1.3 percent. With the rapid increase in income, dietary patterns shift initially significantly towards increased consumption of meat and dairy products, but may decrease subsequently with increasing emphasis on health of an aging society. High incomes also translate into high car ownership, sprawling suburbanization and dense transport networks, nationally and internationally. Land prices increase faster than income per capita. These factors along with high wages result in a considerable intensification of agriculture. Three scenario groups are considered in A1 scenario family reflecting the uncertainty in development of energy sources and conversion technologies in this rapidly changing world. Near-term investment decisions may introduce long-term irreversibilities into the market, with lock-in to one technological configuration or another. The A1B scenario group is based on a balanced mix of energy sources and has an intermediate level of CO2 emissions, but depending on the energy sources developed, emissions in the variants cover a very wide range. In the fossil-fuel intensive scenario group A1FI, emissions approach those of the A2 scenarios; conversely in scenario group A1T with low labor productivity or of rapid progress in "post-fossil" energy technologies, emissions are intermediate between those of B1 and B2. These scenario variants have been introduced into the A1 storyline because of its "high growth with high tech" nature, where differences in alternative technology developments translate into large differences in future GHG emission levels Ecological resilience is assumed to be high in this storyline. Environmental amenities are viewed in a utilitarian way, based on their influence on the formal economy. The concept of environmental quality might change in this storyline from "conservation" of nature to active "management" - and marketing - of natural and environmental services. Data are available for the following periods: 1961-1990, 2010-2039; 2040-2069; and 2090-2099 Mean monthly and change fields.
IPCC Climate Change Data: NIES99 A1a Model: 2080 Radiance
- 负责人:
- DOI:
- doi:10.5063/aa/dpennington.270.3
- 摘要:
- The model used here is a coupled ocean-atmosphere model that consists of the CCSR/NIES atmospheric GCM, the CCSR ocean GCM, a thermodynamic sea-ice model, and a river routing model (Abe-Ouchi et al., 1996). The spatial resolution is T21 spectral truncation (roughly 5.6 degrees latitude/longitude) and 20 vertical levels for the atmospheric part, and roughly 2.8 degrees horizontal grid and 17 vertical levels for the oceanic part. Flux adjustment for atmosphere-ocean heat and water exchange is applied to prevent a drift of the modelled climate. The atmospheric model adopts a radiation scheme based on the k-distribution, two-stream discrete ordinate method (DOM) (Nakajima and Tanaka, 1986). This scheme can deal with absorption, emission and scattering by gases, clouds and aerosol particles in a consistent manner. In the calculation of sulphate aerosol optical properties, the volumetric mode radius of the sulphate particle in dry environment is assumed to be 0.2 micron. The hygroscopic growth of the sulphate is considered by an empirical fit of d'Almeida et al. (1991). The vertical distribution of the sulphate aerosol is assumed to be constant in the lowest 2 km of the atmosphere. The concentrations of greenhouse gases are represented by equivalent-CO2. Three integrations are made for 200 model years (1890-2090). In the control experiment (CTL), the globally uniform concentration of greenhouse gases is kept constant at 345 ppmv CO2-equivalent and the concentration of sulphate is set to zero. In the experiment GG, the concentration of greenhouse gases is gradually increased, while that of sulphate is set to zero. In the experiments GS, the increase in anthropogenic sulphate as well as that in greenhouse gases is given and the aerosol scattering (the direct effect of aerosol) is explicitly represented in the way described above. The indirect effect of aerosol is not included in any experiment. The scenario of atmospheric concentrations of greenhouse gases and sulphate aerosols is given in accordance with Mitchell and Johns (1997). The increase in greenhouse gases is based on the historical record from 1890 to 1990 and is increased by 1 percent / yr (compound) after 1990. For sulphate aerosols, geographical distributions of sulphate loading for 1986 and 2050, which are estimated by a sulphur cycle model (Langer and Rodhe, 1991), are used as basic patterns. Based on global and annual mean sulphur emission rates, the 1986 pattern is scaled for years before 1990; the 2050 pattern is scaled for years after 2050; and the pattern is interpolated from the two basic ones for intermediate years to give the time series of the distribution. The sulphur emission rate in the future is based on the IPCC IS92a scenario. The sulphate concentration is offset in our run so that it starts from zero at 1890. The seasonal variation of sulphate concentration is ignored. Discussion on the results of the experiments will be found in Emori et al. (1999). Climate sensitivity of the CCSR/NIES model derived by equilibrium runs is estimated to be 3.5 degrees Celsius. Global-Mean Temperature, Precipitation and CO2 Changes (w.r.t. 1961-90) for the CCSR/NIES model.From the IPCC website: The A1 Family storyline is a case of rapid and successful economic development, in which regional averages of income per capita converge - current distinctions between poor and rich countries eventually dissolve. In this scenario family, demographic and economic trends are closely linked, as affluence is correlated with long life and small families (low mortality and low fertility). Global population grows to some nine billion by 2050 and declines to about seven billion by 2100. Average age increases, with the needs of retired people met mainly through their accumulated savings in private pension systems. The global economy expands at an average annual rate of about three percent to 2100. This is approximately the same as average global growth since 1850, although the conditions that lead to a global economic in productivity and per capita incomes are unparalleled in history. Income per capita reaches about US$21,000 by 2050. While the high average level of income per capita contributes to a great improvement in the overall health and social conditions of the majority of people, this world is not without its problems. In particular, many communities could face some of the problems of social exclusion encountered by the wealthiest countries in the 20th century and in many places income growth could come with increased pressure on the global commons. Energy and mineral resources are abundant in this scenario family because of rapid technical progress, which both reduce the resources need to produce a given level of output and increases the economically recoverable reserves. Final energy intensity (energy use per unit of GDP) decreases at an average annual rate of 1.3 percent. With the rapid increase in income, dietary patterns shift initially significantly towards increased consumption of meat and dairy products, but may decrease subsequently with increasing emphasis on health of an aging society. High incomes also translate into high car ownership, sprawling suburbanization and dense transport networks, nationally and internationally. Land prices increase faster than income per capita. These factors along with high wages result in a considerable intensification of agriculture. Three scenario groups are considered in A1 scenario family reflecting the uncertainty in development of energy sources and conversion technologies in this rapidly changing world. Near-term investment decisions may introduce long-term irreversibilities into the market, with lock-in to one technological configuration or another. The A1B scenario group is based on a balanced mix of energy sources and has an intermediate level of CO2 emissions, but depending on the energy sources developed, emissions in the variants cover a very wide range. In the fossil-fuel intensive scenario group A1FI, emissions approach those of the A2 scenarios; conversely in scenario group A1T with low labor productivity or of rapid progress in "post-fossil" energy technologies, emissions are intermediate between those of B1 and B2. These scenario variants have been introduced into the A1 storyline because of its "high growth with high tech" nature, where differences in alternative technology developments translate into large differences in future GHG emission levels Ecological resilience is assumed to be high in this storyline. Environmental amenities are viewed in a utilitarian way, based on their influence on the formal economy. The concept of environmental quality might change in this storyline from "conservation" of nature to active "management" - and marketing - of natural and environmental services. Data are available for the following periods: 1961-1990, 2010-2039; 2040-2069; and 2090-2099 Mean monthly and change fields.
IPCC Climate Change Data: NIES99 A1a Model: 2080 Maximum Temperature
- 负责人:
- DOI:
- doi:10.5063/aa/dpennington.273.1
- 摘要:
- The model used here is a coupled ocean-atmosphere model that consists of the CCSR/NIES atmospheric GCM, the CCSR ocean GCM, a thermodynamic sea-ice model, and a river routing model (Abe-Ouchi et al., 1996). The spatial resolution is T21 spectral truncation (roughly 5.6 degrees latitude/longitude) and 20 vertical levels for the atmospheric part, and roughly 2.8 degrees horizontal grid and 17 vertical levels for the oceanic part. Flux adjustment for atmosphere-ocean heat and water exchange is applied to prevent a drift of the modelled climate. The atmospheric model adopts a radiation scheme based on the k-distribution, two-stream discrete ordinate method (DOM) (Nakajima and Tanaka, 1986). This scheme can deal with absorption, emission and scattering by gases, clouds and aerosol particles in a consistent manner. In the calculation of sulphate aerosol optical properties, the volumetric mode radius of the sulphate particle in dry environment is assumed to be 0.2 micron. The hygroscopic growth of the sulphate is considered by an empirical fit of d'Almeida et al. (1991). The vertical distribution of the sulphate aerosol is assumed to be constant in the lowest 2 km of the atmosphere. The concentrations of greenhouse gases are represented by equivalent-CO2. Three integrations are made for 200 model years (1890-2090). In the control experiment (CTL), the globally uniform concentration of greenhouse gases is kept constant at 345 ppmv CO2-equivalent and the concentration of sulphate is set to zero. In the experiment GG, the concentration of greenhouse gases is gradually increased, while that of sulphate is set to zero. In the experiments GS, the increase in anthropogenic sulphate as well as that in greenhouse gases is given and the aerosol scattering (the direct effect of aerosol) is explicitly represented in the way described above. The indirect effect of aerosol is not included in any experiment. The scenario of atmospheric concentrations of greenhouse gases and sulphate aerosols is given in accordance with Mitchell and Johns (1997). The increase in greenhouse gases is based on the historical record from 1890 to 1990 and is increased by 1 percent / yr (compound) after 1990. For sulphate aerosols, geographical distributions of sulphate loading for 1986 and 2050, which are estimated by a sulphur cycle model (Langer and Rodhe, 1991), are used as basic patterns. Based on global and annual mean sulphur emission rates, the 1986 pattern is scaled for years before 1990; the 2050 pattern is scaled for years after 2050; and the pattern is interpolated from the two basic ones for intermediate years to give the time series of the distribution. The sulphur emission rate in the future is based on the IPCC IS92a scenario. The sulphate concentration is offset in our run so that it starts from zero at 1890. The seasonal variation of sulphate concentration is ignored. Discussion on the results of the experiments will be found in Emori et al. (1999). Climate sensitivity of the CCSR/NIES model derived by equilibrium runs is estimated to be 3.5 degrees Celsius. Global-Mean Temperature, Precipitation and CO2 Changes (w.r.t. 1961-90) for the CCSR/NIES model.From the IPCC website: The A1 Family storyline is a case of rapid and successful economic development, in which regional averages of income per capita converge - current distinctions between poor and rich countries eventually dissolve. In this scenario family, demographic and economic trends are closely linked, as affluence is correlated with long life and small families (low mortality and low fertility). Global population grows to some nine billion by 2050 and declines to about seven billion by 2100. Average age increases, with the needs of retired people met mainly through their accumulated savings in private pension systems. The global economy expands at an average annual rate of about three percent to 2100. This is approximately the same as average global growth since 1850, although the conditions that lead to a global economic in productivity and per capita incomes are unparalleled in history. Income per capita reaches about US$21,000 by 2050. While the high average level of income per capita contributes to a great improvement in the overall health and social conditions of the majority of people, this world is not without its problems. In particular, many communities could face some of the problems of social exclusion encountered by the wealthiest countries in the 20th century and in many places income growth could come with increased pressure on the global commons. Energy and mineral resources are abundant in this scenario family because of rapid technical progress, which both reduce the resources need to produce a given level of output and increases the economically recoverable reserves. Final energy intensity (energy use per unit of GDP) decreases at an average annual rate of 1.3 percent. With the rapid increase in income, dietary patterns shift initially significantly towards increased consumption of meat and dairy products, but may decrease subsequently with increasing emphasis on health of an aging society. High incomes also translate into high car ownership, sprawling suburbanization and dense transport networks, nationally and internationally. Land prices increase faster than income per capita. These factors along with high wages result in a considerable intensification of agriculture. Three scenario groups are considered in A1 scenario family reflecting the uncertainty in development of energy sources and conversion technologies in this rapidly changing world. Near-term investment decisions may introduce long-term irreversibilities into the market, with lock-in to one technological configuration or another. The A1B scenario group is based on a balanced mix of energy sources and has an intermediate level of CO2 emissions, but depending on the energy sources developed, emissions in the variants cover a very wide range. In the fossil-fuel intensive scenario group A1FI, emissions approach those of the A2 scenarios; conversely in scenario group A1T with low labor productivity or of rapid progress in "post-fossil" energy technologies, emissions are intermediate between those of B1 and B2. These scenario variants have been introduced into the A1 storyline because of its "high growth with high tech" nature, where differences in alternative technology developments translate into large differences in future GHG emission levels Ecological resilience is assumed to be high in this storyline. Environmental amenities are viewed in a utilitarian way, based on their influence on the formal economy. The concept of environmental quality might change in this storyline from "conservation" of nature to active "management" - and marketing - of natural and environmental services. Data are available for the following periods: 1961-1990, 2010-2039; 2040-2069; and 2090-2099 Mean monthly and change fields.