dataService

您的位置: 首页 > 数据服务 > 数据列表页

筛选

共检索到10条 ,权限内显示50条;

Data from: High levels of diversity and population structure in the potato late blight pathogen at the Mexico center of origin
负责人:
关键词:
oomycetes;plant pathogen;plant pathogen;Toluca Valley;oomycete;Phytophthora infestans;Genetic Variation;Agriculture;Morden;Population Genetics - Empirical
DOI:
doi:10.5061/dryad.262qq
摘要:
lly unidentified or poorly studied compared to invasive populations. Phytophthora infestans, the causal agent of late blight, is one of the most costly pathogens
Data from: Strategies of Phytophtora infestans adaptation to local UV radiation conditions
负责人:
关键词:
Pathogen evolution;aggressiveness;Phenotypic Plasticity;Phytophthora infestans;genetic differentiation;QST\/FST analysis;ultraviolet adaptation
DOI:
doi:10.5061/dryad.t0f998t
摘要:
pathogen, Phytophthora infestans, sampled from various geographic locations in China. We found spatial divergence caused by diversifying selection in UV tolerance among P. infestans
Data from: High levels of diversity and population structure in the potato late blight pathogen at the Mexico center of origin
负责人:
Goss, Erica M.
关键词:
Oomycete Toluca Valley plant pathogen genetic variation Population Genetics - Empirical Agriculture Oomycetes Plant Pathogen
DOI:
doi:10.5061/dryad.262qq.2
摘要:
lly unidentified or poorly studied compared to invasive populations. Phytophthora infestans, the causal agent of late blight, is one of the most costly pathogens
Data from: Trade-offs and evolution of thermal adaptation in the Irish potato famine pathogen Phytophthora infestans
负责人:
关键词:
Diversifying selection;Pathogen evolution;Phenotypic Plasticity;Phytophthora infestans;thermal adaptation;genetic differentiation;Phenotypic Plasticity
DOI:
doi:10.5061/dryad.024t1
摘要:
s to investigate the evolutionary potential for thermal adaptation in the potato late blight pathogen, Phytophthora infestans, and infer its likely respons
Data from: Persistence of the mitochondrial lineage responsible for the Irish potato famine in extant New World Phytophthora infestans
负责人:
关键词:
plant pathogen pathogen pathogen evolution ancient DNA mitogenomes mitogenomics phylogenetics phylogenomics late blight potato blight
DOI:
doi:10.5061/dryad.4n3d1
摘要:
The plant pathogen Phytophthora infestans emerged in Europe in 1845, triggering the Irish potato famine and massive European potato crop losses tha
Data from: Rapid adaptation of the Irish potato famine pathogen Phytophthora infestans to changing temperature
负责人:
关键词:
Phytophthora infestans;thermal adaptation;Fitness;aggressiveness;acclimation
DOI:
doi:10.5061/dryad.z08kprr8h
摘要:
tion to global warming is needed to predict future disease epidemiology and formulate mitigating strategies. In this study, 21 Phytophthora infestans isolates
Data from: Assessing the effects of quantitative host resistance on the life-history traits of sporulating parasites with growing lesions
负责人:
关键词:
epidemiological modelling;potato late blight;aggressiveness;sporulation dynamics;Phytophthora infestans;lesion model
DOI:
doi:10.5061/dryad.g108557
摘要:
with growing lesions, phenotyping is difficult because one needs to disentangle properly pathogen spread from sporulation. By considering Phytophthora infestans
Data from: A genomic survey of HECT ubiquitin ligases in eukaryotes reveals independent expansions of the HECT system in several lineages.
负责人:
关键词:
DOI:
doi:10.5061/dryad.mt620
摘要:
Phytophthora infestans independently expanded their HECT repertoire. In contrast, plant, excavate, rhodophyte, chlorophyte and fungal genomes have a more limited enzymatic
Data from: The effects of model choice and mitigating bias on the ribosomal tree of life
负责人:
关键词:
Trichoplax adhaerens;Cyanophora paradoxa;Desulfurispirillum indicum;Chlamydomonas reinhardtii;Bigelowiella natans;Cenarchaeum symbiosum;Cryptosporidium muris;Zymomonas mobilis;Nitrosoarchaeum limnia;Lactobacillus fermentum;Aspergillus flavus;Oscillibacter valericigenes;Arachnula sp;Archaeoglobus fulgidus;single-matrix model;Thermoplasma acidophilum;Paenibacillus sp;Perkinsus marinus;Corynebacterium pseudotuberculosis;Natromonas pharaonis;Staphylothermus marinus;two-domain tree;Diplonema sp;Prevotella denticola;Cyanothece sp;Ribosomal tree of life;Candida albicans;Anaerolinea thermophila;Methanocaldococcus jannaschii;Phaeodactylum tricornutum;Methylacidiphilum infernorum;Methanosarcina mazei;Dictyostelium discoideum;Chlorobium limicola;Thermotoga maritima;Methanosphaera stadtmanae;Babesia bovis;Thermodesulfatator indicus;Thermovibrio ammonificans;Flamella sp;Korarchaeum cryptofilum;Syntrophus aciditrophicus;Methanobrevibacter smithii;Deinococcus deserti;Gemmatimonas aurantiaca;Dyadobacter fermentans;Methanococcus aeolicus;Tribonema sp;Toxoplasma gondii;Acetobacter pasteurianus;Methanococcoides burtonii;Leishmania major;Thalassiosira pseudonana;Aeropyrum pernix;Nitrosomonas europaea;mixture model;Thermococcus kodakarensis;Arabidopsis thaliana;Apis mellifera;Nitrosopumilis sp;Halobacterium salinarum;Acidilobus saccharovorans;Pyrobaculum aerophilium;Fibrobacter succinogenes;Acanthamoeba sp;Idiomarina loihiensis;Ciona intestinalis;Meiothermus silvanus;Thermocrinis albus;Neisseria meningitidis;Spirochaeta coccoides;Methanopyrus kandleri;Xylella fastidiosa;Bodo sp;Ignicoccus hospitalis;Physarum polycephalum;Desulfurococcus mucosus;Danio rerio;Compositional heterogeneity;Treponema brennaborense;Sulfolobus solfataricus;Hypterthermus butylicus;Picrophilus torridus;Plasmodium vivax;Denitrovibrio acetiphilus;Haloarcula marismortui;three-domain tree;Metallosphaera sedula;Phytophthora infestans;Planctomyces brasiliensis;Thermovirga lienii;Trypanosoma brucei;Dictyoglomus thermophilum;Cryptobacterium curtum;Trimastix pyriformis;Cryptococcus gattii;Dehalococcoides ethenogenes;Pyrolobus fumarii;Guillardia theta;Methanoculleus marisingri;Thermus scotoductus;Syntrophothermus lipocalidus;Coraliomargarita akajimensis;Desulfobacca acetoxidans;Nitrosospira multiformis;Heterosigma sp;Prochlorococcus marinus;Fusobacterium nucleatum;Rhodopirellula baltica;Emiliana huxleyi;Nanoarchaeum equitans;Pyrococcus horikoshii;Ostreococcus tauri;Euglena sp
DOI:
doi:10.5061/dryad.7785h
摘要:
conflicting phylogenetic signals from HGT and/or paralogy. Thus, we tested several models of varying sophistication on three different datasets, performed

首页上一页1下一页尾页

意 见 箱

匿名:登录

个人用户登录

找回密码

第三方账号登录

忘记密码

个人用户注册

必须为有效邮箱
6~16位数字与字母组合
6~16位数字与字母组合
请输入正确的手机号码

信息补充