A needle steering system and apparatus provides active, semi-autonomous control of needle insertion paths while still enabling a clinician ultimate control over needle insertion. The present teaching describes a method and system for controlling needle path as the needle is inserted by precisely controlling the rotation of the needle as it continuously rotates during insertion. This enables underactuated 2 degree-of-freedom (DOF) control of the direction and the curvature of the needle from a single rotary actuator. Control of the rotary motion is therefore decoupled from the needle insertion. The rotary motion controls steering effort and direction, while the insertion controls needle depth or insertion speed. In one implementation, the proposed method does not require constant velocity insertion, interleaved insertion and rotation, or known insertion position or speed. The insertion may be provided by a robot or other automated method, may be a manual insertion, or may be a teleoperated insertion.