A computer-implemented method for characterizing circulatory blood volume and autoregulatory compensatory mechanisms to maintain circulatory blood volume is disclosed. A biological signal that emulates the arterial pulse wave is collected from a sensor. Three derived parameters are extrapolated from the biological signal. The first parameter, circulatory stress, reflects of the changes of the heart rate frequency. The second, circulatory blood volume, reflects the changes in the frequency strength of the heart rate frequency. The third, Pulse Volume Alteration (PVA) Index is a ratio of the sum of the strengths of the heart rate frequency harmonics to the strength of the heart rate frequency of the unprocessed biological signal. Each parameter is compared to a threshold value and assessed to determine an adequacy of circulatory blood volume and an appropriateness of the autoregulatory mechanisms used to maintain circulatory blood volume adequacy.