A method for simulation of an automated industrial plant simulated in a plant model divided into a plurality of submodels, where the submodels are modeled with a behavior description comprising a calculation algorithm or a mathematical equation, each submodel is connected into the plant model with at least one submodel, where the plant model or the submodels are translated in preparation for the simulation by a translation run into a form which is executable by a computer system, an execution sequence of the submodels is defined, the submodels are expanded by run time models having a calculation time assigned to a respective submodel, where an overall calculation time of the plant model is derived and graphically presented in the granularity of the calculation times of the submodels based on the execution sequence and the expanded submodels to provide a detection and localization of real-time-critical execution paths in the plant model.