The device is an ultra-low power, non-invasive in-vivo blood analyte sensor system incorporating multiple sensors including a carbon base and/or carbon base material coated with metallic nanoparticles and/or metallic nanoparticle nanoprobes, as a modified Clark electrode sensor system, that detects hydrogen peroxide concentrations, pH, and/or glucose concentrations (and other analytes) in bodily secretions (e.g. tears, saliva, sweat). The device consists of multiple chemoreceptive sensors, a microprocessor, a signal amplifier, signal filtering, error correction algorithms, analog-to-digital converter and wireless electromagnetic data transmitter to a remote device for further processing and/or data storage (e.g. on a server, on a cloud-based storage system, etc) and/or visual representation via software. The method involves applying the nanoprobe sensor array to skin tissue and the resulting electrical impulses correlate with glucose concentration within liquids such as tears, saliva, blood, etc. The collected data is then represented visually on a computer (handheld, smart-phone, desktop, laptop, etc) via software. The device is powered by ambient electromagnetic radiation, thermoelectric and/or solar power and/or rechargeable battery. The device is placed against the skin or immersed in a sample for sensor measurement. Single and continuous data collection is possible. The device can be reused repeatedly, re-sterilized and it is a high accuracy, low-cost option for multiple use glucose concentration measurements. The device can monitor blood glucose for Type I and Type II diabetics and it is suitable for a wide range of applications including gases, liquids and solids, biological, organic and inorganic chemical analysis.