您的位置: 首页 > 农业专利 > 详情页

基于贝叶斯宽度残差神经网络的害虫图像识别方法
专利权人:
吉林大学
发明人:
王生生,赵慧颖
申请号:
CN201810472227.4
公开号:
CN108648191A
申请日:
2018.05.17
申请国别(地区):
中国
年份:
2018
代理人:
李荣武
摘要:
本发明公开一种基于贝叶斯宽度残差神经网络的害虫图像识别方法,该方法包括以下步骤:步骤一、对害虫图像识别训练数据集进行预处理,使用富边缘检测算法(Rich‑Edge)对该灰度图进行害虫边缘检测。步骤二、构建贝叶斯宽度残差神经网络(Bayesian Wide‑ResidualNetwork,BWResNet)。步骤三、将步骤一得到的害虫边缘图像输入到步骤二构建的BWResNet中。利用步骤一中得到的害虫边缘图像训练集得到BWResNet的总误差函数。步骤四、利用步骤三中得到的误差函数,对网络进行训练。在这里我们提出分块共轭(Block‑cg)算法对网络进行训练。步骤五、根据步骤四中优化后的网络更新超参数。步骤六、重复执行步骤四、五,得到最终的网络,将害虫图像验证集输入到网络后得到的分类准确率更高。
来源网站:
中国工程科技知识中心
来源网址:
http://www.ckcest.cn/home/

意 见 箱

匿名:登录

个人用户登录

找回密码

第三方账号登录

忘记密码

个人用户注册

必须为有效邮箱
6~16位数字与字母组合
6~16位数字与字母组合
请输入正确的手机号码

信息补充