您的位置: 首页 > 农业专利 > 详情页

一种基于LightGBM的EEG疲劳状态分类方法
专利权人:
杭州电子科技大学
发明人:
曾虹,杨晨,孔万增,吴振华,张佳明
申请号:
CN201811571326.4
公开号:
CN109512442A
申请日:
2018.21.12
申请国别(地区):
CN
年份:
2019
代理人:
摘要:
本发明公开了一种基于LightGBM的EEG疲劳状态分类方法。本发明以共空间模式作为特征提取方法,梯度boosting框架LightGBM作为分类器,通过对EEG信号的分析,对驾驶员的疲劳程度进行分类,实现疲劳、清醒、中性三种状态的区分。首先获取数据并预处理;其次通过CSP对脑电数据进行特征提取,后对脑电特征进行降维;然后划定实验的训练集和测试集,再构建分类模型分类。针对精神状态预测,本发明获得的结果更好,且从时间消耗角度,本发明拥有较快的运行速度,这对后期应用于实时数据分析提供了基础。总之,本发明在精神状态预测方面具有较好的性能,以期在实际的脑机交互中有着广泛的应用前景。
来源网站:
中国工程科技知识中心
来源网址:
http://www.ckcest.cn/home/

意 见 箱

匿名:登录

个人用户登录

找回密码

第三方账号登录

忘记密码

个人用户注册

必须为有效邮箱
6~16位数字与字母组合
6~16位数字与字母组合
请输入正确的手机号码

信息补充