To provide a nerve regeneration-inducing tube being excellent in cell growth property, resistance to pressure, shape recovery property, and anti-kink property in a nerve regeneration-inducing tube where a collagen solution is applied on the outer surface of a tubular body knitted with ultrafine fiber comprising biodegradable and bioabsorbable polymer while collage is filled in the inner area of the tubular body. Specifically, to provide a nerve regeneration-inducing tube where a degradation speed is adjusted so as to make it suitable for the connection of nerve gaps of more than 40 mm. The present invention is a nerve regeneration-inducing tube where collagen is coated on the outer surface of a tubular body knitted with fiber bundles where plural ultrafine fibers comprising a biodegradable and bioabsorbable polymer are bundled, characterized in that , said tubular body mostly comprises a first polymer which is biodegradable and bioabsorbable and a second polymer which has higher biodegradability and bioabsorbability than those of the first polymer.