The invention relates to the improvement of exoskeletons and masters thereof and to their use in teleoperative applications in virtual worlds or the real world. Non-actuated exoskeletons can be used to transfer loads from the user, for example, heavy luggage, tools or also the body weight of the user, to the ground and to relieve the joint and muscle system of the user. This can increase the endurance and also effective strength of the user. Motor-driven, actuated exoskeletons can be used in different fields. They can be worn as a freely moveable robotic suit which comprises a built-in energy supply and electronic control. They can also be used to improve the force and endurance of a user whilst the user moves in an unlimited environment. Another use of the fixed exoskeleton is in the field of interaction with virtual worlds or for controlling real robots. In this instance, an exoskeleton can be used to establish a teleoperative connection between the user and the master (virtual avatar or real robot). The user users the exoskeleton to directly transfer control commands to the master. The elements of the user and the master then practically carry out the same movements synchronously. The aim of the invention is to improve exoskeletons and masters of the mentioned type and the associated control units. This can, in particular, be achieved by a favorable realization of rotational axes which define rotational movements of different elements which to a large extent perform a hip movement.