An in vivo endoscope illuminates tissue using multiple sources. Light from a short-range source exits a tubular wall of the endoscope through a first illumination region that overlaps an imaging region, and the light returns through the imaging region after reflection by tissue, to form an image in a camera. Light from a long-range source exits the tubular wall through a second illumination region that does not overlap the imaging region. The endoscope of some embodiments includes a mirror, and light from an emitter for the short-range source is split and reaches the first illumination region from both sides of an optical axis of the camera. Illuminating the first illumination region with split fractions of light results in greater uniformity of illumination, than illuminating directly with an un-split beam. The energy generated by each source is changed depending on distance of the tissue to be imaged.