Typically, electron beam radiation therapy aims at delivering a uniform dose to a target volume containing cancer cells. Electron sources typically impinge a spatially uniform flux across the beam onto the patient; however, irregular patient and bolus surfaces, the latter encountered in bolus electron conformal therapy (ECT), scatter electrons unevenly creating non-homogeneous dose distributions in the target. However, spatially-modulated beam intensities can restore target dose homogeneity, as well as enable utilization of other advanced ECT methods. Unfortunately, present methods, which have attempted to spatially-modulate beam intensities, have been either impractical or ineffective. Here, a novel, passive method has been developed to spatially-modulate electron beam intensities by taking advantage of multiple Coulomb scattering. The method utilizes Island Blocks or Island Apertures, strategically located in ‘;transparent’; or ‘;opaque’; substrates, respectively, which are placed in the beam's path. This method spatially-modulates electron flux across the beam with insignificant loss of electron beam energy. Thus, delivering a uniform, highly conformal dose distribution to the target volume is possible. Further, the method is inexpensive and can be easily incorporated into existing electron therapy machines.