Systems and methods for improved thermophotonic imaging are provided in which both amplitude and phase image information is obtained with a high signal to noise ratio and depth-resolved capabilities. Image data obtained from an imaging camera is dynamically averaged and subsequently processed to extract amplitude and/or phase image data. The system may be configured for a wide range of imaging modalities, including single frequency modulation (thermophotonic lock-in imaging), Thermal-Wave Radar imaging or Thermophotonic Radar imaging involving chirp modulation, and Binary Phase Coded Modulation. Such imaging modalities may find application in many diverse areas, including non-destructive testing and biomedical diagnostic imaging including the imaging of teeth and monitoring changes in the tooth over time which are due to pathology such as dental caries or erosion.