Disclosed is a flexible and stretchable electronic device based on a biocompatible film. The biocompatible film is utilized as an encapsulation layer and a substrate layer of the device a bonding layer is provided between the encapsulation layer and a functional layer and an adhesion layer is arranged under the substrate layer. The functional layer employs a flexible and stretchable structure. Solution-based transfer printing technology is primarily used during the preparation of such a device to achieve integration of the functional layer and the flexible substrate layer. This device retains and even enhances the flexibility and stretchability structurally. Meanwhile, the biocompatibility properties thereof, such as being waterproof and air permeable, hypoallergenic, etc., allow it to work normally on the human body surface for more than 24 hours without foreign body sensation and discomfort, and thus, skin maceration, redness or other allergic reactions due to poor biocompatibility can be avoided.